Now, the question is “does first birth affect women’s life satisfaction?”

Prepare the dataset

library(tidyverse) # Add the tidyverse package to my current library.
library(haven) # Handle labelled data.
library(texreg)
library(splitstackshape) #transform wide data (with stacked variables) to long data
library(plm) #linear models for panel data

##Import 6 waves of women data
women1 <- read_dta("wave1_women.dta")
women2 <- read_dta("wave2_women.dta")
women3 <- read_dta("wave3_women.dta")
women4 <- read_dta("wave4_women.dta")
women5 <- read_dta("wave5_women.dta")
women6 <- read_dta("wave6_women.dta")

##Clean 6 waves of women data
clean_fun <- function(df) {  df %>% 
  transmute(
    id, 
    age, 
    wave=as.numeric(wave),
    relstat=as_factor(relstat), #make relstat as a factor
    relstat=case_when(relstat== "-7 Incomplete data" ~ as.character(NA), #specify when is missing for relstat
                      TRUE ~ as.character(relstat))%>% as_factor(), #make relstat as a factor again
    health=case_when(hlt1<0 ~ as.numeric(NA),  #specify when hlt1 is missing 
                   TRUE ~ as.numeric(hlt1)),
    childno=case_when(nkidsbio==-7~ as.numeric(NA), #specify when is missing for relstat
                      TRUE ~ as.numeric(nkidsbio)), 
    sat=case_when(sat6<0 ~ as.numeric(NA), #specify when sat6 is missing
                   TRUE ~ as.numeric(sat6)),
  )%>% drop_na()  }
women1a <- clean_fun(women1)
women2a <- clean_fun(women2)
women3a <- clean_fun(women3)
women4a <- clean_fun(women4)
women5a <- clean_fun(women5)
women6a <- clean_fun(women6)

women1b <- women1a %>% filter(childno==0)%>% #keep individuals who are childless in the first wave
rename(wave.1=wave, age.1=age, relstat.1=relstat, health.1=health, childno.1=childno, sat.1=sat ) #rename variables

women2b <- women2a %>% 
rename(wave.2=wave, age.2=age, relstat.2=relstat, health.2=health, childno.2=childno, sat.2=sat )

women3b <- women3a %>% 
rename(wave.3=wave, age.3=age, relstat.3=relstat, health.3=health, childno.3=childno, sat.3=sat )

women4b <- women4a %>% 
rename(wave.4=wave, age.4=age, relstat.4=relstat, health.4=health, childno.4=childno, sat.4=sat )

women5b <- women5a %>% 
rename(wave.5=wave, age.5=age, relstat.5=relstat, health.5=health, childno.5=childno, sat.5=sat )

women6b <- women6a %>% 
rename(wave.6=wave, age.6=age, relstat.6=relstat, health.6=health, childno.6=childno, sat.6=sat )


women_wide <- left_join(women1b, women2b, by = "id") %>%  # left join women1b and women2b
  left_join(women3b, by = "id") %>% # left join with women3b
  left_join(women4b, by = "id") %>% # left join with women4b
  left_join(women5b, by = "id") %>% # left join with women5b
  left_join(women6b, by = "id") # left join with women6b
#by using left_join I keep those have no kids in the first wave and follow them

No. 1

Question

Transfer the “women_wide” data to a long format, name it as “women_long”

Answer

women_long<- merged.stack(women_wide, #dataset for transfrom
                            var.stubs = c("age", "wave", "relstat", "health","childno", "sat"), 
#var.stubs is to specify the prefixes of the variable groups
                            sep = ".") %>%  
#sep is to specify the character that separates the "variable name" from the "times" in the source
                            drop_na(wave)
#drop the observations which did not join the wave

No. 2

Question

Use pooled regression to estimate the effect of first births on women’s life satisfaction?

Answer

panel_data <- pdata.frame(women_long, index=c("id", "wave"))
pols <- plm(sat ~ childno, data=panel_data, model="pooling") 
summary(pols)
## Pooling Model
## 
## Call:
## plm(formula = sat ~ childno, data = panel_data, model = "pooling")
## 
## Unbalanced Panel: n = 3770, T = 1-6, N = 15024
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -7.73697 -0.63976  0.36024  1.36024  2.36024 
## 
## Coefficients:
##             Estimate Std. Error  t-value Pr(>|t|)    
## (Intercept) 7.639758   0.013807 553.3134  < 2e-16 ***
## childno     0.097211   0.043509   2.2343  0.02548 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    40514
## Residual Sum of Squares: 40501
## R-Squared:      0.00033219
## Adj. R-Squared: 0.00026565
## F-statistic: 4.99188 on 1 and 15022 DF, p-value: 0.025481

No. 3

Question

Use fixed effect to estimate the effect of childbearing on women’s life satisfaction?

Answer

fixed <- plm(sat ~ childno, data=panel_data, model="within") 
summary(fixed)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = sat ~ childno, data = panel_data, model = "within")
## 
## Unbalanced Panel: n = 3770, T = 1-6, N = 15024
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -8.0000 -0.5000  0.0000  0.6000  5.6667 
## 
## Coefficients:
##         Estimate Std. Error t-value Pr(>|t|)
## childno 0.037299   0.052198  0.7146   0.4749
## 
## Total Sum of Squares:    17346
## Residual Sum of Squares: 17345
## R-Squared:      4.5372e-05
## Adj. R-Squared: -0.33496
## F-statistic: 0.510598 on 1 and 11253 DF, p-value: 0.47489

No. 4

Question

Compare the results from the pooled OLS and fixed effect

Answer

texreg::screenreg(list(pols, fixed), 
                custom.model.names=c("Pooled regression", 
                                     "Fixed effect(within)"),
                include.ci = FALSE, 
                omit.coef = "factor",
                center=TRUE) 
## 
## ====================================================
##              Pooled regression  Fixed effect(within)
## ----------------------------------------------------
## (Intercept)      7.64 ***                           
##                 (0.01)                              
## childno          0.10 *             0.04            
##                 (0.04)             (0.05)           
## ----------------------------------------------------
## R^2              0.00               0.00            
## Adj. R^2         0.00              -0.33            
## Num. obs.    15024              15024               
## ====================================================
## *** p < 0.001; ** p < 0.01; * p < 0.05

No. 5

Question

  • Step 1: Do you think the results reflect the effect of first child births?
  • Step 2: Remove observations when individuals have twins at first birth
  • Step 3: Remove observations when individuals start to have a second birth

Answer for Step 1

table(panel_data$childno)
## 
##     0     1     2     3 
## 14044   809   167     4
#there are many cases that contains second birth.

Answer for Step 2

#first, identify individuals who have twins
panel_data <- panel_data %>% 
  group_by(id) %>% 
  mutate(
    firstkid=case_when( childno!=lag(childno, 1) & lag(childno, 1)==0 & childno>0 ~ 1,
                          TRUE ~ 0), 
    #when the person has 0 children at t-1 while has at least 1 child at t, define it first childbirth
    twin=case_when( childno!=lag(childno, 1) & lag(childno, 1)==0 & childno==1 ~ 1, #single birth
                    childno!=lag(childno, 1) & lag(childno, 1)==0 & childno==2 ~ 2, #twin birth
                          TRUE ~ 0)
    #when the person has 0 children at t-1 while has 1 child at t, define it a single birth, i.e. 1
    #when the person has 0 children at t-1 while has 2 children at t, define it a twin birth, i.e. 2
    ) 


#second, remove individuals who have twins
twinid <- panel_data$id[panel_data$twin==2] #the id of women who have twin for their first birth

panel_data <- panel_data[!(panel_data$id %in% twinid),] #remove twin cases
#when the id does not belong to the list of id that are individuals having twin at first childbearing

Answer for Step 3

panel_data <-  filter(panel_data, childno<2) #keep observations right before women having second child

table(panel_data$childno)
## 
##     0     1 
## 14044   809
#now we are sure people here are those who only have one child

No. 6

Question

  • Step1: Now, please run fixed effect to find out the effect of first birth on women’s life satisfaction. Interpret the result.

  • Step2: Compare the result from Question 3, and is there any difference?

Answer for Step 1

fixed2 <- plm(sat ~ childno, data=panel_data, model="within") 
summary(fixed2)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = sat ~ childno, data = panel_data, model = "within")
## 
## Unbalanced Panel: n = 3770, T = 1-6, N = 14853
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -8.0000 -0.5000  0.0000  0.6000  5.6667 
## 
## Coefficients:
##         Estimate Std. Error t-value Pr(>|t|)   
## childno 0.183487   0.068156  2.6922  0.00711 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    17022
## Residual Sum of Squares: 17011
## R-Squared:      0.00065359
## Adj. R-Squared: -0.33932
## F-statistic: 7.24777 on 1 and 11082 DF, p-value: 0.0071096
##Interpretation:
#A within-person change from childless to having a first child is associated with 0.18 scale points increase in life satisfaction for women (always correct interpretation).
#When having a first child, life satisfaction is 0.18 points higher than when being childless (always correct interpretation).

Answer for Step 2

texreg::screenreg(list(fixed, fixed2), 
                custom.model.names=c("Fixed effect(within)", 
                                     "Fixed effect(within)2"),
                include.ci = FALSE, 
                center=TRUE) 
## 
## ======================================================
##            Fixed effect(within)  Fixed effect(within)2
## ------------------------------------------------------
## childno        0.04                  0.18 **          
##               (0.05)                (0.07)            
## ------------------------------------------------------
## R^2            0.00                  0.00             
## Adj. R^2      -0.33                 -0.34             
## Num. obs.  15024                 14853                
## ======================================================
## *** p < 0.001; ** p < 0.01; * p < 0.05