library(readxl)
penn <- read_excel("C:/Users/ranja/Downloads/pwt100 (1).xlsx",
sheet = "Data")
penn
## # A tibble: 12,810 × 52
## countrycode country currency_unit year rgdpe rgdpo pop emp avh hc
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ABW Aruba Aruban Guilder 1950 NA NA NA NA NA NA
## 2 ABW Aruba Aruban Guilder 1951 NA NA NA NA NA NA
## 3 ABW Aruba Aruban Guilder 1952 NA NA NA NA NA NA
## 4 ABW Aruba Aruban Guilder 1953 NA NA NA NA NA NA
## 5 ABW Aruba Aruban Guilder 1954 NA NA NA NA NA NA
## 6 ABW Aruba Aruban Guilder 1955 NA NA NA NA NA NA
## 7 ABW Aruba Aruban Guilder 1956 NA NA NA NA NA NA
## 8 ABW Aruba Aruban Guilder 1957 NA NA NA NA NA NA
## 9 ABW Aruba Aruban Guilder 1958 NA NA NA NA NA NA
## 10 ABW Aruba Aruban Guilder 1959 NA NA NA NA NA NA
## # ℹ 12,800 more rows
## # ℹ 42 more variables: ccon <dbl>, cda <dbl>, cgdpe <dbl>, cgdpo <dbl>,
## # cn <dbl>, ck <dbl>, ctfp <dbl>, cwtfp <dbl>, rgdpna <dbl>, rconna <dbl>,
## # rdana <dbl>, rnna <dbl>, rkna <dbl>, rtfpna <dbl>, rwtfpna <dbl>,
## # labsh <dbl>, irr <dbl>, delta <dbl>, xr <dbl>, pl_con <dbl>, pl_da <dbl>,
## # pl_gdpo <dbl>, i_cig <chr>, i_xm <chr>, i_xr <chr>, i_outlier <chr>,
## # i_irr <chr>, cor_exp <dbl>, statcap <dbl>, csh_c <dbl>, csh_i <dbl>, …
This is PENN WORLD DATA.
penn
## # A tibble: 12,810 × 52
## countrycode country currency_unit year rgdpe rgdpo pop emp avh hc
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ABW Aruba Aruban Guilder 1950 NA NA NA NA NA NA
## 2 ABW Aruba Aruban Guilder 1951 NA NA NA NA NA NA
## 3 ABW Aruba Aruban Guilder 1952 NA NA NA NA NA NA
## 4 ABW Aruba Aruban Guilder 1953 NA NA NA NA NA NA
## 5 ABW Aruba Aruban Guilder 1954 NA NA NA NA NA NA
## 6 ABW Aruba Aruban Guilder 1955 NA NA NA NA NA NA
## 7 ABW Aruba Aruban Guilder 1956 NA NA NA NA NA NA
## 8 ABW Aruba Aruban Guilder 1957 NA NA NA NA NA NA
## 9 ABW Aruba Aruban Guilder 1958 NA NA NA NA NA NA
## 10 ABW Aruba Aruban Guilder 1959 NA NA NA NA NA NA
## # ℹ 12,800 more rows
## # ℹ 42 more variables: ccon <dbl>, cda <dbl>, cgdpe <dbl>, cgdpo <dbl>,
## # cn <dbl>, ck <dbl>, ctfp <dbl>, cwtfp <dbl>, rgdpna <dbl>, rconna <dbl>,
## # rdana <dbl>, rnna <dbl>, rkna <dbl>, rtfpna <dbl>, rwtfpna <dbl>,
## # labsh <dbl>, irr <dbl>, delta <dbl>, xr <dbl>, pl_con <dbl>, pl_da <dbl>,
## # pl_gdpo <dbl>, i_cig <chr>, i_xm <chr>, i_xr <chr>, i_outlier <chr>,
## # i_irr <chr>, cor_exp <dbl>, statcap <dbl>, csh_c <dbl>, csh_i <dbl>, …
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
penn%>%
group_by(country)%>%
select(country,avh)%>%
filter(!is.na(avh))%>%
summarize(average_avh=mean(avh))%>%
mutate(wwk=average_avh/52)
## # A tibble: 69 × 3
## country average_avh wwk
## <chr> <dbl> <dbl>
## 1 Argentina 1905. 36.6
## 2 Australia 1891. 36.4
## 3 Austria 1856. 35.7
## 4 Bangladesh 2502. 48.1
## 5 Belgium 1745. 33.6
## 6 Brazil 1945. 37.4
## 7 Bulgaria 1658. 31.9
## 8 Cambodia 2352. 45.2
## 9 Canada 1872. 36.0
## 10 Chile 2267. 43.6
## # ℹ 59 more rows
Below operations are done on countries like India, china, pakistan,bangladesh.
country1=c("India","China","Pakistan","Sri Lanka","Nepal")
penn%>%
group_by(country)%>%
select(country,pop,year)%>%
filter(country==country1)%>%
filter(year>2010)%>%
summarize(average_pop=mean(pop))
## # A tibble: 5 × 2
## country average_pop
## <chr> <dbl>
## 1 China 1395.
## 2 India 1310.
## 3 Nepal 27.8
## 4 Pakistan 198.
## 5 Sri Lanka 20.9