This is data of gapminder for teaching
library(gapminder)
gapminder
## # A tibble: 1,704 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # ℹ 1,694 more rows
In this section selecting data of year 1980 onwards
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
gapminder%>%
filter (year > 1980)
## # A tibble: 852 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1982 39.9 12881816 978.
## 2 Afghanistan Asia 1987 40.8 13867957 852.
## 3 Afghanistan Asia 1992 41.7 16317921 649.
## 4 Afghanistan Asia 1997 41.8 22227415 635.
## 5 Afghanistan Asia 2002 42.1 25268405 727.
## 6 Afghanistan Asia 2007 43.8 31889923 975.
## 7 Albania Europe 1982 70.4 2780097 3631.
## 8 Albania Europe 1987 72 3075321 3739.
## 9 Albania Europe 1992 71.6 3326498 2497.
## 10 Albania Europe 1997 73.0 3428038 3193.
## # ℹ 842 more rows