FREQUENCY TEST

Author

Kaenat Gul (N1325553)

Loading Packages:

library(tibble)
library(tidyverse)
library(vtable)
library(ggplot2)
library(gplots)
library(graphics)
library(vcd)
library(corrplot)
library(gmodels)

One-Proportion Z-Test in R:

                          One-proportion Z-test is utilized to contrast a seen proportion with a hypothetical one. This is when there only exist two categories. This article delineates fundamentals of the one-proportion Z-test. It also furnishes practical instances employing R software.
                          

For Example:

            For instance we possess a mouse population. It's got half males and half females. This yields a probability of 0.5 or 50%. A number of these mice numbering 160 have developed spontaneous cancer. We have 95 male mice and 65 female mice in this category.
  • The number of successes (male with cancer) is 95

  • The observed proportion (popo) of male is 95/160

  • The observed proportion (qq) of female is 1−po1−po

  • The expected proportion (pepe) of male is 0.5 (50%)

  • The number of observations (nn) is 160

R functions: binom.test() & prop.test()

The R functions binom.test() and prop.test() can be used to perform one-proportion test:

  • binom.test(): compute exact binomial test. Recommended when sample size is small

  • prop.test(): can be used when sample size is large ( N > 30). It uses a normal approximation to binomial

prop.test(x=95,n=160,p=0.5, correct=FALSE)

    1-sample proportions test without continuity correction

data:  95 out of 160, null probability 0.5
X-squared = 5.625, df = 1, p-value = 0.01771
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.5163169 0.6667870
sample estimates:
      p 
0.59375 
prop.test(x = 95, n = 160, p = 0.5, correct = FALSE,alternative = "less")

    1-sample proportions test without continuity correction

data:  95 out of 160, null probability 0.5
X-squared = 5.625, df = 1, p-value = 0.9911
alternative hypothesis: true p is less than 0.5
95 percent confidence interval:
 0.0000000 0.6555425
sample estimates:
      p 
0.59375 
res <- prop.test(x = 95, n = 160, p = 0.5, 
                 correct = FALSE)
# Printing the results
res 

    1-sample proportions test without continuity correction

data:  95 out of 160, null probability 0.5
X-squared = 5.625, df = 1, p-value = 0.01771
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.5163169 0.6667870
sample estimates:
      p 
0.59375 
# printing the p-value
res$p.value
[1] 0.01770607
# printing the mean
res$estimate
      p 
0.59375 
# printing the confidence interval
res$conf.int
[1] 0.5163169 0.6667870
attr(,"conf.level")
[1] 0.95

What is two-proportions z-test?

The two-proportions z-test is used to compare two observed proportions. This article describes the basics of two-proportions *z-test and provides pratical examples using R software

Example:

we have two groups of individuals:

Group A with lung cancer: n = 500 Group B, healthy individuals: n = 500 The number of smokers in each group is as follow:

Group A with lung cancer: n = 500, 490 smokers, pA=490/500=98 Group B, healthy individuals: n = 500, 400 smokers, pB=400/500=80 In this setting:

The overall proportion of smokers is p=frac(490+400)500+500=89 The overall proportion of non-smokers is q=1−p=11

res <- prop.test(x = c(490, 400), n = c(500, 500))
# Printing the results
res 

    2-sample test for equality of proportions with continuity correction

data:  c(490, 400) out of c(500, 500)
X-squared = 80.909, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
95 percent confidence interval:
 0.1408536 0.2191464
sample estimates:
prop 1 prop 2 
  0.98   0.80 
# printing the p-value
res$p.value
[1] 2.363439e-19
# printing the mean
res$estimate
prop 1 prop 2 
  0.98   0.80 
# printing the confidence interval
res$conf.int
[1] 0.1408536 0.2191464
attr(,"conf.level")
[1] 0.95

chi-square goodness of fit test:

The chi-square goodness of fit test is used to compare the observed distribution to an expected distribution, in a situation where we have two or more categories in a discrete data. In other words, it compares multiple observed proportions to expected probabilities.

tulip <- c(81, 50, 27)
res <- chisq.test(tulip, p = c(1/3, 1/3, 1/3))
res

    Chi-squared test for given probabilities

data:  tulip
X-squared = 27.886, df = 2, p-value = 8.803e-07
# printing the p-value
res$p.value
[1] 8.802693e-07
# printing the mean
res$estimate
NULL

Chi-Square Test of Independence in R:

The chi-square test of independence is used to analyze the frequency table (i.e. contingency table) formed by two categorical variables. The chi-square test evaluates whether there is a significant association between the categories of the two variables. This article describes the basics of chi-square test and provides practical examples using R software.

Data format: Contingency tables:

# Import the data
file_path <- "http://www.sthda.com/sthda/RDoc/data/housetasks.txt"
housetasks <- read.delim(file_path, row.names = 1)
# head(housetasks)

Graphical display of contengency tables:

Contingency table can be visualized using the function balloonplot(). This function draws a graphical matrix where each cell contains a dot whose size reflects the relative magnitude of the corresponding component.

# 1. convert the data as a table

dt <- as.table(as.matrix(housetasks))
# 2. Graph
balloonplot(t(dt), main ="housetasks", xlab ="", ylab="",
            label = FALSE, show.margins = FALSE)

Mosaicplot:

library("graphics")
mosaicplot(dt, shade = TRUE, las=2,
           main = "housetasks")

  1. Blue color indicates that the observed value is higher than the expected value.
  2. Red color specifies that the observed value is lower than the expected value.

Plotting a Subset of the table:

# install.packages("vcd")
library("vcd")
# plot just a subset of the table
assoc(head(dt, 5), shade = TRUE, las=3)

Compute chi-square test in R:

chisq <- chisq.test(housetasks)
chisq

    Pearson's Chi-squared test

data:  housetasks
X-squared = 1944.5, df = 36, p-value < 2.2e-16
# Observed counts
chisq$observed
           Wife Alternating Husband Jointly
Laundry     156          14       2       4
Main_meal   124          20       5       4
Dinner       77          11       7      13
Breakfeast   82          36      15       7
Tidying      53          11       1      57
Dishes       32          24       4      53
Shopping     33          23       9      55
Official     12          46      23      15
Driving      10          51      75       3
Finances     13          13      21      66
Insurance     8           1      53      77
Repairs       0           3     160       2
Holidays      0           1       6     153
# Expected counts
round(chisq$expected,2)
            Wife Alternating Husband Jointly
Laundry    60.55       25.63   38.45   51.37
Main_meal  52.64       22.28   33.42   44.65
Dinner     37.16       15.73   23.59   31.52
Breakfeast 48.17       20.39   30.58   40.86
Tidying    41.97       17.77   26.65   35.61
Dishes     38.88       16.46   24.69   32.98
Shopping   41.28       17.48   26.22   35.02
Official   33.03       13.98   20.97   28.02
Driving    47.82       20.24   30.37   40.57
Finances   38.88       16.46   24.69   32.98
Insurance  47.82       20.24   30.37   40.57
Repairs    56.77       24.03   36.05   48.16
Holidays   55.05       23.30   34.95   46.70

Function chisq.test():

round(chisq$residuals, 3)
             Wife Alternating Husband Jointly
Laundry    12.266      -2.298  -5.878  -6.609
Main_meal   9.836      -0.484  -4.917  -6.084
Dinner      6.537      -1.192  -3.416  -3.299
Breakfeast  4.875       3.457  -2.818  -5.297
Tidying     1.702      -1.606  -4.969   3.585
Dishes     -1.103       1.859  -4.163   3.486
Shopping   -1.289       1.321  -3.362   3.376
Official   -3.659       8.563   0.443  -2.459
Driving    -5.469       6.836   8.100  -5.898
Finances   -4.150      -0.852  -0.742   5.750
Insurance  -5.758      -4.277   4.107   5.720
Repairs    -7.534      -4.290  20.646  -6.651
Holidays   -7.419      -4.620  -4.897  15.556

Visualize Pearson residuals using the package corrplot:

corrplot(chisq$residuals, is.cor = FALSE)

Contibution in percentage (%):

contrib <- 100*chisq$residuals^2/chisq$statistic
round(contrib, 3)
            Wife Alternating Husband Jointly
Laundry    7.738       0.272   1.777   2.246
Main_meal  4.976       0.012   1.243   1.903
Dinner     2.197       0.073   0.600   0.560
Breakfeast 1.222       0.615   0.408   1.443
Tidying    0.149       0.133   1.270   0.661
Dishes     0.063       0.178   0.891   0.625
Shopping   0.085       0.090   0.581   0.586
Official   0.688       3.771   0.010   0.311
Driving    1.538       2.403   3.374   1.789
Finances   0.886       0.037   0.028   1.700
Insurance  1.705       0.941   0.868   1.683
Repairs    2.919       0.947  21.921   2.275
Holidays   2.831       1.098   1.233  12.445

Visualize the contribution:

corrplot(contrib, is.cor = FALSE)

Excerise 4:

Loading Data:

mpg
# A tibble: 234 × 11
   manufacturer model      displ  year   cyl trans drv     cty   hwy fl    class
   <chr>        <chr>      <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
 1 audi         a4           1.8  1999     4 auto… f        18    29 p     comp…
 2 audi         a4           1.8  1999     4 manu… f        21    29 p     comp…
 3 audi         a4           2    2008     4 manu… f        20    31 p     comp…
 4 audi         a4           2    2008     4 auto… f        21    30 p     comp…
 5 audi         a4           2.8  1999     6 auto… f        16    26 p     comp…
 6 audi         a4           2.8  1999     6 manu… f        18    26 p     comp…
 7 audi         a4           3.1  2008     6 auto… f        18    27 p     comp…
 8 audi         a4 quattro   1.8  1999     4 manu… 4        18    26 p     comp…
 9 audi         a4 quattro   1.8  1999     4 auto… 4        16    25 p     comp…
10 audi         a4 quattro   2    2008     4 manu… 4        20    28 p     comp…
# ℹ 224 more rows

Using group_by() and summarize():

we can get the total number of cars with each class & cyl combination using group_by() and summarize().

mpg%>%
  group_by(class, cyl)%>%
  summarize(n=n())%>%
  kable()
`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.
class cyl n
2seater 8 5
compact 4 32
compact 5 2
compact 6 13
midsize 4 16
midsize 6 23
midsize 8 2
minivan 4 1
minivan 6 10
pickup 4 3
pickup 6 10
pickup 8 20
subcompact 4 21
subcompact 5 2
subcompact 6 7
subcompact 8 5
suv 4 8
suv 6 16
suv 8 38

Crosstabs (dplyr & tidyr):

mpg%>%
  group_by(class, cyl)%>%
  summarise(n=n())%>%
  spread(cyl, n)%>%
  kable()
`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.
class 4 5 6 8
2seater NA NA NA 5
compact 32 2 13 NA
midsize 16 NA 23 2
minivan 1 NA 10 NA
pickup 3 NA 10 20
subcompact 21 2 7 5
suv 8 NA 16 38

Summary statistics:

Here instead of displaying frequencies, we can get the average number of city miles by class & cyl.

mpg%>%
  group_by(class, cyl)%>%
  summarise(mean_cty=mean(cty))%>%
  spread(cyl, mean_cty)%>%
  kable()
`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.
class 4 5 6 8
2seater NA NA NA 15.40000
compact 21.37500 21 16.92308 NA
midsize 20.50000 NA 17.78261 16.00000
minivan 18.00000 NA 15.60000 NA
pickup 16.00000 NA 14.50000 11.80000
subcompact 22.85714 20 17.00000 14.80000
suv 18.00000 NA 14.50000 12.13158

Max number of city miles by class & cyl:

mpg%>%
  group_by(class, cyl)%>%
  summarise(max_cty=max(cty))%>%
  spread(cyl, max_cty)%>%
  kable()
`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.
class 4 5 6 8
2seater NA NA NA 16
compact 33 21 18 NA
midsize 23 NA 19 16
minivan 18 NA 17 NA
pickup 17 NA 16 14
subcompact 35 20 18 15
suv 20 NA 17 14

Proportions (dplyr & tidyr):

We can find proportions by creating a new, calculated variable dividing row frequency by table frequency.

mpg%>%
  group_by(class)%>%
  summarize(n=n())%>%
  mutate(prop=n/sum(n))%>%   # our new proportion variable
  kable()
class n prop
2seater 5 0.0213675
compact 47 0.2008547
midsize 41 0.1752137
minivan 11 0.0470085
pickup 33 0.1410256
subcompact 35 0.1495726
suv 62 0.2649573

Contingency table of proportion values:

We can create a contingency table of proportion values by applying the same spread command as before. Vary the group_by() and spread() arguents to produce proportions of different variables.

mpg%>%
  group_by(class, cyl)%>%
  summarize(n=n())%>%
  mutate(prop=n/sum(n))%>%
  subset(select=c("class","cyl","prop"))%>%   #drop the frequency value
  spread(class, prop)%>%
  kable()
`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.
cyl 2seater compact midsize minivan pickup subcompact suv
4 NA 0.6808511 0.3902439 0.0909091 0.0909091 0.6000000 0.1290323
5 NA 0.0425532 NA NA NA 0.0571429 NA
6 NA 0.2765957 0.5609756 0.9090909 0.3030303 0.2000000 0.2580645
8 1 NA 0.0487805 NA 0.6060606 0.1428571 0.6129032

Table():

table() is a quick way to pull together row/column frequencies and proportions for categorical variables.Using the basic table() command, we can get a contingency table of vehicle class by number of cylinders.

table(mpg$class, mpg$cyl)
            
              4  5  6  8
  2seater     0  0  0  5
  compact    32  2 13  0
  midsize    16  0 23  2
  minivan     1  0 10  0
  pickup      3  0 10 20
  subcompact 21  2  7  5
  suv         8  0 16 38

Table, Column, and Row Frequencies:

mpg_table<- table(mpg$class, mpg$cyl) #define object w/table parameters for simple calling
ftable(mpg_table)
             4  5  6  8
                       
2seater      0  0  0  5
compact     32  2 13  0
midsize     16  0 23  2
minivan      1  0 10  0
pickup       3  0 10 20
subcompact  21  2  7  5
suv          8  0 16 38

For row frequencies, we use the margin.table() command:

margin.table(mpg_table, 1)  

   2seater    compact    midsize    minivan     pickup subcompact        suv 
         5         47         41         11         33         35         62 

For Column:

margin.table(mpg_table, 2)  

 4  5  6  8 
81  4 79 70 

Table, Column, and Row Proportions:

For proportion of the entire table.

prop.table(mpg_table)     #proportion of entire table
            
                       4           5           6           8
  2seater    0.000000000 0.000000000 0.000000000 0.021367521
  compact    0.136752137 0.008547009 0.055555556 0.000000000
  midsize    0.068376068 0.000000000 0.098290598 0.008547009
  minivan    0.004273504 0.000000000 0.042735043 0.000000000
  pickup     0.012820513 0.000000000 0.042735043 0.085470085
  subcompact 0.089743590 0.008547009 0.029914530 0.021367521
  suv        0.034188034 0.000000000 0.068376068 0.162393162

For Row:

prop.table(mpg_table, 1)  #proportion of entire row
            
                      4          5          6          8
  2seater    0.00000000 0.00000000 0.00000000 1.00000000
  compact    0.68085106 0.04255319 0.27659574 0.00000000
  midsize    0.39024390 0.00000000 0.56097561 0.04878049
  minivan    0.09090909 0.00000000 0.90909091 0.00000000
  pickup     0.09090909 0.00000000 0.30303030 0.60606061
  subcompact 0.60000000 0.05714286 0.20000000 0.14285714
  suv        0.12903226 0.00000000 0.25806452 0.61290323

For column:

prop.table(mpg_table, 2)  #proportion of entire column
            
                      4          5          6          8
  2seater    0.00000000 0.00000000 0.00000000 0.07142857
  compact    0.39506173 0.50000000 0.16455696 0.00000000
  midsize    0.19753086 0.00000000 0.29113924 0.02857143
  minivan    0.01234568 0.00000000 0.12658228 0.00000000
  pickup     0.03703704 0.00000000 0.12658228 0.28571429
  subcompact 0.25925926 0.50000000 0.08860759 0.07142857
  suv        0.09876543 0.00000000 0.20253165 0.54285714

gmodels::CrossTable():

The CrossTable() command from the gmodels package produces frequencies, and table, row, & column proportions with a single command. The values are not as quickly drawn into tables of their own, or further manipulated as they are with the dyplr/tidyr tables, but this is a handy command nonetheless

CrossTable(mpg$class, mpg$cyl)

 
   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  234 

 
             | mpg$cyl 
   mpg$class |         4 |         5 |         6 |         8 | Row Total | 
-------------|-----------|-----------|-----------|-----------|-----------|
     2seater |         0 |         0 |         0 |         5 |         5 | 
             |     1.731 |     0.085 |     1.688 |     8.210 |           | 
             |     0.000 |     0.000 |     0.000 |     1.000 |     0.021 | 
             |     0.000 |     0.000 |     0.000 |     0.071 |           | 
             |     0.000 |     0.000 |     0.000 |     0.021 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     compact |        32 |         2 |        13 |         0 |        47 | 
             |    15.210 |     1.782 |     0.518 |    14.060 |           | 
             |     0.681 |     0.043 |     0.277 |     0.000 |     0.201 | 
             |     0.395 |     0.500 |     0.165 |     0.000 |           | 
             |     0.137 |     0.009 |     0.056 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     midsize |        16 |         0 |        23 |         2 |        41 | 
             |     0.230 |     0.701 |     6.059 |     8.591 |           | 
             |     0.390 |     0.000 |     0.561 |     0.049 |     0.175 | 
             |     0.198 |     0.000 |     0.291 |     0.029 |           | 
             |     0.068 |     0.000 |     0.098 |     0.009 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     minivan |         1 |         0 |        10 |         0 |        11 | 
             |     2.070 |     0.188 |    10.641 |     3.291 |           | 
             |     0.091 |     0.000 |     0.909 |     0.000 |     0.047 | 
             |     0.012 |     0.000 |     0.127 |     0.000 |           | 
             |     0.004 |     0.000 |     0.043 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
      pickup |         3 |         0 |        10 |        20 |        33 | 
             |     6.211 |     0.564 |     0.117 |    10.391 |           | 
             |     0.091 |     0.000 |     0.303 |     0.606 |     0.141 | 
             |     0.037 |     0.000 |     0.127 |     0.286 |           | 
             |     0.013 |     0.000 |     0.043 |     0.085 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
  subcompact |        21 |         2 |         7 |         5 |        35 | 
             |     6.515 |     3.284 |     1.963 |     2.858 |           | 
             |     0.600 |     0.057 |     0.200 |     0.143 |     0.150 | 
             |     0.259 |     0.500 |     0.089 |     0.071 |           | 
             |     0.090 |     0.009 |     0.030 |     0.021 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
         suv |         8 |         0 |        16 |        38 |        62 | 
             |     8.444 |     1.060 |     1.162 |    20.403 |           | 
             |     0.129 |     0.000 |     0.258 |     0.613 |     0.265 | 
             |     0.099 |     0.000 |     0.203 |     0.543 |           | 
             |     0.034 |     0.000 |     0.068 |     0.162 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
Column Total |        81 |         4 |        79 |        70 |       234 | 
             |     0.346 |     0.017 |     0.338 |     0.299 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|