# Instalamos y/o cargamos paquetes
library("tidyverse")
library("readxl")
read_csv()
ALUMNOS_2024 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTwVt48G81FHfD_K9jcVmhjN3otTkR0-5Y8mC23oaEOTmhiG4So0kjw6I0b2tkU5ilpehvlhqBjId9i/pub?output=csv")
## Rows: 24 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): Marca temporal, Género, ¿Qué tan difícil le resulta el aprendizaje ...
## dbl (2): Edad, ¿Cuántas asignaturas rendiste y aprobaste este año?
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(ALUMNOS_2024)
## [1] "Marca temporal"
## [2] "Género"
## [3] "Edad"
## [4] "¿Qué tan difícil le resulta el aprendizaje del software R y RStudio?"
## [5] "¿Cuántas asignaturas rendiste y aprobaste este año?"
read_excel()
MANDARINAS <- read_excel("MANDARINAS_2024.xlsx")
glimpse(MANDARINAS)
## Rows: 419
## Columns: 8
## $ N <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ GRUPO <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ VARIEDAD <chr> "Clementina", "Clementina", "Clementina", "Clementina", …
## $ N_DE_FRUTO <dbl> 19, 9, 21, 8, 4, 30, 22, 23, 17, 27, 29, 14, 16, 13, 25,…
## $ PESO <dbl> 101, 122, 127, 126, 37, 139, 140, 130, 138, 142, 121, 15…
## $ DIAM_ECUAT <dbl> 64.2, 64.2, 64.7, 64.9, 65.9, 66.4, 67.1, 67.5, 68.2, 68…
## $ NIVEL_DE_DAÑO <dbl> 1, 0, 3, 3, 2, 2, 3, 1, 2, 2, 2, 1, 1, 2, 1, 1, 0, 1, 0,…
## $ COLOR <dbl> 4, 5, 4, 1, 5, 4, 4, 3, 3, 4, 4, 1, 1, 3, 4, 1, 4, 1, 5,…
IRIS <- iris %>%
rename(Longitud.Sepalo = Sepal.Length,
Ancho.Sepalo = Sepal.Width,
Longitud.Petalo = Petal.Length,
Ancho.Petalo = Petal.Width,
ESPECIE = Species)
## Rows: 150
## Columns: 5
## $ Longitud.Sepalo <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4,…
## $ Ancho.Sepalo <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7,…
## $ Longitud.Petalo <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5,…
## $ Ancho.Petalo <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2,…
## $ ESPECIE <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa…
ggplot(IRIS, aes(Longitud.Petalo, Ancho.Petalo)) +
geom_point()
ggplot(IRIS, aes(Longitud.Petalo, Ancho.Petalo)) +
geom_point(shape = 25, fill = "yellow") # Para las formas 21 a 25, `fill =` controla el color de relleno de la forma.
También es posible modificar el tamaño de la forma seleccionada con
“size =
”
ggplot(IRIS, aes(Longitud.Petalo, Ancho.Petalo)) +
geom_point(size = 4)
ggplot(IRIS, aes(Longitud.Petalo, Ancho.Petalo)) +
geom_point(color = "red")
Combinamos atributos
ggplot(IRIS, aes(Longitud.Petalo, Ancho.Petalo, shape = ESPECIE, color = ESPECIE)) +
geom_point(size= 3)
PP_77_22 <- read_excel("PP_77_22.xlsx")
glimpse(PP_77_22)
## Rows: 46
## Columns: 2
## $ ANIO <dbl> 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987,…
## $ PP <dbl> 666.4, 553.2, 675.7, 532.4, 528.7, 410.9, 569.2, 484.0, 610.2, 37…
ggplot(PP_77_22, aes(ANIO, PP)) +
geom_line()
Renombramos variables
PP_77_22 <- PP_77_22 %>%
rename(AÑO = ANIO,
PRECIPITACION = PP)
Visualizamos
PP_77_22
## # A tibble: 46 × 2
## AÑO PRECIPITACION
## <dbl> <dbl>
## 1 1977 666.
## 2 1978 553.
## 3 1979 676.
## 4 1980 532.
## 5 1981 529.
## 6 1982 411.
## 7 1983 569.
## 8 1984 484
## 9 1985 610.
## 10 1986 379.
## # ℹ 36 more rows
Combinamos ambos argumentos…
ggplot(PP_77_22, aes(AÑO, PRECIPITACION)) +
geom_line(color = "blue", linetype = 3, lwd = 1 )
ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Cambiamos color de los contenedores.
ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram(color = "yellow")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Modificamos color y relleno de los contenedores.
ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram(color = "yellow", fill = "darkgreen")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
A continuación pueden ver los nombres de algunos colores con la
función colors()
colors()
## [1] "white" "aliceblue" "antiquewhite"
## [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
## [7] "antiquewhite4" "aquamarine" "aquamarine1"
## [10] "aquamarine2" "aquamarine3" "aquamarine4"
## [13] "azure" "azure1" "azure2"
## [16] "azure3" "azure4" "beige"
## [19] "bisque" "bisque1" "bisque2"
## [22] "bisque3" "bisque4" "black"
## [25] "blanchedalmond" "blue" "blue1"
## [28] "blue2" "blue3" "blue4"
## [31] "blueviolet" "brown" "brown1"
## [34] "brown2" "brown3" "brown4"
## [37] "burlywood" "burlywood1" "burlywood2"
## [40] "burlywood3" "burlywood4" "cadetblue"
## [43] "cadetblue1" "cadetblue2" "cadetblue3"
## [46] "cadetblue4" "chartreuse" "chartreuse1"
## [49] "chartreuse2" "chartreuse3" "chartreuse4"
## [52] "chocolate" "chocolate1" "chocolate2"
## [55] "chocolate3" "chocolate4" "coral"
## [58] "coral1" "coral2" "coral3"
## [61] "coral4" "cornflowerblue" "cornsilk"
## [64] "cornsilk1" "cornsilk2" "cornsilk3"
## [67] "cornsilk4" "cyan" "cyan1"
## [70] "cyan2" "cyan3" "cyan4"
## [73] "darkblue" "darkcyan" "darkgoldenrod"
## [76] "darkgoldenrod1" "darkgoldenrod2" "darkgoldenrod3"
## [79] "darkgoldenrod4" "darkgray" "darkgreen"
## [82] "darkgrey" "darkkhaki" "darkmagenta"
## [85] "darkolivegreen" "darkolivegreen1" "darkolivegreen2"
## [88] "darkolivegreen3" "darkolivegreen4" "darkorange"
## [91] "darkorange1" "darkorange2" "darkorange3"
## [94] "darkorange4" "darkorchid" "darkorchid1"
## [97] "darkorchid2" "darkorchid3" "darkorchid4"
## [100] "darkred" "darksalmon" "darkseagreen"
## [103] "darkseagreen1" "darkseagreen2" "darkseagreen3"
## [106] "darkseagreen4" "darkslateblue" "darkslategray"
## [109] "darkslategray1" "darkslategray2" "darkslategray3"
## [112] "darkslategray4" "darkslategrey" "darkturquoise"
## [115] "darkviolet" "deeppink" "deeppink1"
## [118] "deeppink2" "deeppink3" "deeppink4"
## [121] "deepskyblue" "deepskyblue1" "deepskyblue2"
## [124] "deepskyblue3" "deepskyblue4" "dimgray"
## [127] "dimgrey" "dodgerblue" "dodgerblue1"
## [130] "dodgerblue2" "dodgerblue3" "dodgerblue4"
## [133] "firebrick" "firebrick1" "firebrick2"
## [136] "firebrick3" "firebrick4" "floralwhite"
## [139] "forestgreen" "gainsboro" "ghostwhite"
## [142] "gold" "gold1" "gold2"
## [145] "gold3" "gold4" "goldenrod"
## [148] "goldenrod1" "goldenrod2" "goldenrod3"
## [151] "goldenrod4" "gray" "gray0"
## [154] "gray1" "gray2" "gray3"
## [157] "gray4" "gray5" "gray6"
## [160] "gray7" "gray8" "gray9"
## [163] "gray10" "gray11" "gray12"
## [166] "gray13" "gray14" "gray15"
## [169] "gray16" "gray17" "gray18"
## [172] "gray19" "gray20" "gray21"
## [175] "gray22" "gray23" "gray24"
## [178] "gray25" "gray26" "gray27"
## [181] "gray28" "gray29" "gray30"
## [184] "gray31" "gray32" "gray33"
## [187] "gray34" "gray35" "gray36"
## [190] "gray37" "gray38" "gray39"
## [193] "gray40" "gray41" "gray42"
## [196] "gray43" "gray44" "gray45"
## [199] "gray46" "gray47" "gray48"
## [202] "gray49" "gray50" "gray51"
## [205] "gray52" "gray53" "gray54"
## [208] "gray55" "gray56" "gray57"
## [211] "gray58" "gray59" "gray60"
## [214] "gray61" "gray62" "gray63"
## [217] "gray64" "gray65" "gray66"
## [220] "gray67" "gray68" "gray69"
## [223] "gray70" "gray71" "gray72"
## [226] "gray73" "gray74" "gray75"
## [229] "gray76" "gray77" "gray78"
## [232] "gray79" "gray80" "gray81"
## [235] "gray82" "gray83" "gray84"
## [238] "gray85" "gray86" "gray87"
## [241] "gray88" "gray89" "gray90"
## [244] "gray91" "gray92" "gray93"
## [247] "gray94" "gray95" "gray96"
## [250] "gray97" "gray98" "gray99"
## [253] "gray100" "green" "green1"
## [256] "green2" "green3" "green4"
## [259] "greenyellow" "grey" "grey0"
## [262] "grey1" "grey2" "grey3"
## [265] "grey4" "grey5" "grey6"
## [268] "grey7" "grey8" "grey9"
## [271] "grey10" "grey11" "grey12"
## [274] "grey13" "grey14" "grey15"
## [277] "grey16" "grey17" "grey18"
## [280] "grey19" "grey20" "grey21"
## [283] "grey22" "grey23" "grey24"
## [286] "grey25" "grey26" "grey27"
## [289] "grey28" "grey29" "grey30"
## [292] "grey31" "grey32" "grey33"
## [295] "grey34" "grey35" "grey36"
## [298] "grey37" "grey38" "grey39"
## [301] "grey40" "grey41" "grey42"
## [304] "grey43" "grey44" "grey45"
## [307] "grey46" "grey47" "grey48"
## [310] "grey49" "grey50" "grey51"
## [313] "grey52" "grey53" "grey54"
## [316] "grey55" "grey56" "grey57"
## [319] "grey58" "grey59" "grey60"
## [322] "grey61" "grey62" "grey63"
## [325] "grey64" "grey65" "grey66"
## [328] "grey67" "grey68" "grey69"
## [331] "grey70" "grey71" "grey72"
## [334] "grey73" "grey74" "grey75"
## [337] "grey76" "grey77" "grey78"
## [340] "grey79" "grey80" "grey81"
## [343] "grey82" "grey83" "grey84"
## [346] "grey85" "grey86" "grey87"
## [349] "grey88" "grey89" "grey90"
## [352] "grey91" "grey92" "grey93"
## [355] "grey94" "grey95" "grey96"
## [358] "grey97" "grey98" "grey99"
## [361] "grey100" "honeydew" "honeydew1"
## [364] "honeydew2" "honeydew3" "honeydew4"
## [367] "hotpink" "hotpink1" "hotpink2"
## [370] "hotpink3" "hotpink4" "indianred"
## [373] "indianred1" "indianred2" "indianred3"
## [376] "indianred4" "ivory" "ivory1"
## [379] "ivory2" "ivory3" "ivory4"
## [382] "khaki" "khaki1" "khaki2"
## [385] "khaki3" "khaki4" "lavender"
## [388] "lavenderblush" "lavenderblush1" "lavenderblush2"
## [391] "lavenderblush3" "lavenderblush4" "lawngreen"
## [394] "lemonchiffon" "lemonchiffon1" "lemonchiffon2"
## [397] "lemonchiffon3" "lemonchiffon4" "lightblue"
## [400] "lightblue1" "lightblue2" "lightblue3"
## [403] "lightblue4" "lightcoral" "lightcyan"
## [406] "lightcyan1" "lightcyan2" "lightcyan3"
## [409] "lightcyan4" "lightgoldenrod" "lightgoldenrod1"
## [412] "lightgoldenrod2" "lightgoldenrod3" "lightgoldenrod4"
## [415] "lightgoldenrodyellow" "lightgray" "lightgreen"
## [418] "lightgrey" "lightpink" "lightpink1"
## [421] "lightpink2" "lightpink3" "lightpink4"
## [424] "lightsalmon" "lightsalmon1" "lightsalmon2"
## [427] "lightsalmon3" "lightsalmon4" "lightseagreen"
## [430] "lightskyblue" "lightskyblue1" "lightskyblue2"
## [433] "lightskyblue3" "lightskyblue4" "lightslateblue"
## [436] "lightslategray" "lightslategrey" "lightsteelblue"
## [439] "lightsteelblue1" "lightsteelblue2" "lightsteelblue3"
## [442] "lightsteelblue4" "lightyellow" "lightyellow1"
## [445] "lightyellow2" "lightyellow3" "lightyellow4"
## [448] "limegreen" "linen" "magenta"
## [451] "magenta1" "magenta2" "magenta3"
## [454] "magenta4" "maroon" "maroon1"
## [457] "maroon2" "maroon3" "maroon4"
## [460] "mediumaquamarine" "mediumblue" "mediumorchid"
## [463] "mediumorchid1" "mediumorchid2" "mediumorchid3"
## [466] "mediumorchid4" "mediumpurple" "mediumpurple1"
## [469] "mediumpurple2" "mediumpurple3" "mediumpurple4"
## [472] "mediumseagreen" "mediumslateblue" "mediumspringgreen"
## [475] "mediumturquoise" "mediumvioletred" "midnightblue"
## [478] "mintcream" "mistyrose" "mistyrose1"
## [481] "mistyrose2" "mistyrose3" "mistyrose4"
## [484] "moccasin" "navajowhite" "navajowhite1"
## [487] "navajowhite2" "navajowhite3" "navajowhite4"
## [490] "navy" "navyblue" "oldlace"
## [493] "olivedrab" "olivedrab1" "olivedrab2"
## [496] "olivedrab3" "olivedrab4" "orange"
## [499] "orange1" "orange2" "orange3"
## [502] "orange4" "orangered" "orangered1"
## [505] "orangered2" "orangered3" "orangered4"
## [508] "orchid" "orchid1" "orchid2"
## [511] "orchid3" "orchid4" "palegoldenrod"
## [514] "palegreen" "palegreen1" "palegreen2"
## [517] "palegreen3" "palegreen4" "paleturquoise"
## [520] "paleturquoise1" "paleturquoise2" "paleturquoise3"
## [523] "paleturquoise4" "palevioletred" "palevioletred1"
## [526] "palevioletred2" "palevioletred3" "palevioletred4"
## [529] "papayawhip" "peachpuff" "peachpuff1"
## [532] "peachpuff2" "peachpuff3" "peachpuff4"
## [535] "peru" "pink" "pink1"
## [538] "pink2" "pink3" "pink4"
## [541] "plum" "plum1" "plum2"
## [544] "plum3" "plum4" "powderblue"
## [547] "purple" "purple1" "purple2"
## [550] "purple3" "purple4" "red"
## [553] "red1" "red2" "red3"
## [556] "red4" "rosybrown" "rosybrown1"
## [559] "rosybrown2" "rosybrown3" "rosybrown4"
## [562] "royalblue" "royalblue1" "royalblue2"
## [565] "royalblue3" "royalblue4" "saddlebrown"
## [568] "salmon" "salmon1" "salmon2"
## [571] "salmon3" "salmon4" "sandybrown"
## [574] "seagreen" "seagreen1" "seagreen2"
## [577] "seagreen3" "seagreen4" "seashell"
## [580] "seashell1" "seashell2" "seashell3"
## [583] "seashell4" "sienna" "sienna1"
## [586] "sienna2" "sienna3" "sienna4"
## [589] "skyblue" "skyblue1" "skyblue2"
## [592] "skyblue3" "skyblue4" "slateblue"
## [595] "slateblue1" "slateblue2" "slateblue3"
## [598] "slateblue4" "slategray" "slategray1"
## [601] "slategray2" "slategray3" "slategray4"
## [604] "slategrey" "snow" "snow1"
## [607] "snow2" "snow3" "snow4"
## [610] "springgreen" "springgreen1" "springgreen2"
## [613] "springgreen3" "springgreen4" "steelblue"
## [616] "steelblue1" "steelblue2" "steelblue3"
## [619] "steelblue4" "tan" "tan1"
## [622] "tan2" "tan3" "tan4"
## [625] "thistle" "thistle1" "thistle2"
## [628] "thistle3" "thistle4" "tomato"
## [631] "tomato1" "tomato2" "tomato3"
## [634] "tomato4" "turquoise" "turquoise1"
## [637] "turquoise2" "turquoise3" "turquoise4"
## [640] "violet" "violetred" "violetred1"
## [643] "violetred2" "violetred3" "violetred4"
## [646] "wheat" "wheat1" "wheat2"
## [649] "wheat3" "wheat4" "whitesmoke"
## [652] "yellow" "yellow1" "yellow2"
## [655] "yellow3" "yellow4" "yellowgreen"
bins
. Usando este método especificamos el número de
contenedores.ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram(bins = 8, color = "gray", fill = "lightblue") +
theme_classic()
binwidth
. Con el segundo método, en lugar de especificar el
número de bins, especificamos el ancho de los bins. Por ejemplo,
establezcamos el ancho de cada contenedor en cien milímetros.ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram(binwidth = 100, color = "red", fill = "blue") +
theme_classic()
ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_freqpoly(binwidth = 100)
Combinamos un histograma con un polígono de frecuencias
ggplot(PP_77_22, aes(PRECIPITACION)) +
geom_histogram(binwidth = 100, color = "yellow") +
geom_freqpoly(binwidth = 100, color = "red", linewidth = 1.5)
MANDARINAS <- read_excel("MANDARINAS_2024.xlsx")
str(MANDARINAS)
## tibble [419 × 8] (S3: tbl_df/tbl/data.frame)
## $ N : num [1:419] 1 2 3 4 5 6 7 8 9 10 ...
## $ GRUPO : num [1:419] 1 1 1 1 1 1 1 1 1 1 ...
## $ VARIEDAD : chr [1:419] "Clementina" "Clementina" "Clementina" "Clementina" ...
## $ N_DE_FRUTO : num [1:419] 19 9 21 8 4 30 22 23 17 27 ...
## $ PESO : num [1:419] 101 122 127 126 37 139 140 130 138 142 ...
## $ DIAM_ECUAT : num [1:419] 64.2 64.2 64.7 64.9 65.9 66.4 67.1 67.5 68.2 68.2 ...
## $ NIVEL_DE_DAÑO: num [1:419] 1 0 3 3 2 2 3 1 2 2 ...
## $ COLOR : num [1:419] 4 5 4 1 5 4 4 3 3 4 ...
ggplot(MANDARINAS, aes(DIAM_ECUAT, VARIEDAD)) +
geom_boxplot()
ggplot(MANDARINAS, aes(DIAM_ECUAT, VARIEDAD, color = VARIEDAD)) +
geom_boxplot()
¿Y si agregamos la media muestral?
ggplot(MANDARINAS, aes(DIAM_ECUAT, VARIEDAD, color = VARIEDAD)) +
geom_boxplot() +
stat_summary(fun = mean, color = "black") # función para agregar la media muestral y asignarle color
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).