# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x= symbols,
get ="stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select= adjusted,
mutate_fun= periodReturn,
period= "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
#weights
weights <- c(0.25,0.25,0.2,0.2,0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols,weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
replace_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00220
## 3 2013-03-28 0.0127
## 4 2013-04-30 0.0173
## 5 2013-05-31 -0.0113
## 6 2013-06-28 -0.0233
## 7 2013-07-31 0.0342
## 8 2013-08-30 -0.0231
## 9 2013-09-30 0.0513
## 10 2013-10-31 0.0305
## # ℹ 50 more rows
##5.1
# Get market returns
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
# 5.3 Calculating CAPM Beta
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.761
###Scatter with regression line from ggplot
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")
actual_fitted_long_tbl <- portfolio_market_returns_tbl %>%
# Linear Regression Model
lm(portfolio_returns ~ market_returns, data = .) %>%
# Get Fitted and Actual Returns
broom::augment() %>%
# Add Date
mutate(date = portfolio_market_returns_tbl$date) %>%
select(date, portfolio_returns, .fitted) %>%
# Transform Data to Long
pivot_longer(cols = c(portfolio_returns, .fitted),
names_to = "type", values_to = "returns")
actual_fitted_long_tbl %>%
ggplot(aes(x = date, y = returns, color = type)) +
geom_line()