Prakt PML 10 - Hipotesis linier One-Way Classification
Model Linier Umum dalam Klasifikasi Satu Arah
Model Linier
\[ y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad i = 1, \dots, k \quad j = 1, \dots, n_i \]
- \(y_{ij}\): pengamatan ke-\(j\) pada perlakuan ke-\(i\),
- \(\mu\): rataan umum,
- \(\tau_i\): efek dari perlakuan ke-\(i\),
- \(\epsilon_{ij}\): kesalahan acak (\(\epsilon_{ij} \sim N(0, \sigma^2)\)).
Asumsi Utama
- Kesalahan \(\epsilon_{ij}\) berdistribusi normal dengan rata-rata nol dan variansi homogen.
- Perlakuan \(\tau_i\) adalah pengaruh tetap dari perlakuan ke-\(i\) terhadap respons \(y_{ij}\).
Model dalam Bentuk Matriks
\[ \mathbf{y} = X \boldsymbol{\beta} + \boldsymbol{\epsilon} \]
- \(\mathbf{y}\) adalah vektor pengamatan,
- \(X\) adalah matriks desain yang mengkode perlakuan (sering disebut sebagai matriks model atau desain),
- \(\boldsymbol{\beta}\) adalah vektor parameter yang akan diestimasi (terdiri dari \(\mu\) dan efek perlakuan \(\tau_i\)),
- \(\boldsymbol{\epsilon}\) adalah vektor kesalahan acak.
Uji Hipotesis
\[ H_0: \tau_1 = \tau_2 = \dots = \tau_k \]
Artinya, tidak ada perbedaan antara efek dari masing-masing perlakuan. Hipotesis ini juga bisa dituliskan dalam bentuk matriks sebagai:
\[ H_0: C \beta = 0 \]
di mana:
\(C\) adalah matriks kontras yang mendefinisikan hubungan antar parameter (dalam hal ini perbedaan antar perlakuan),
\(\beta\) adalah vektor parameter.
Proses Uji Hipotesis
MKT
\[ \hat{\beta} = (X'X)^{-1} X'y \]
di mana:
\(X'\) adalah transpos dari matriks desain,
\(y\) adalah vektor pengamatan.
Statistik Uji F
\[ F = \frac{C \hat{\beta}' (C (X'X)^{-1} C')^{-1} C \hat{\beta}}{s^2} \]
di mana:
\(C \hat{\beta}\) adalah hasil estimasi dari kontras-kontras parameter,
\((X'X)^{-1}\) adalah invers dari matriks informasi \(X'X\),
\(s^2\) adalah varians residual yang dihitung sebagai:
\[ s^2 = \frac{\sum \text{residual}^2}{n - r} \]
Keputusan Uji Hipotesis
Bandingkan dengan nilai kritis dari distribusi F (\(F_{\text{tabel}}\)) untuk tingkat signifikansi yang diberikan (\(\alpha = 0.05\)):
- Jika \(F_{\text{hitung}} > F_{\text{tabel}}\), kita tolak hipotesis nol dan menyimpulkan bahwa ada perbedaan signifikan antar perlakuan.
- Jika \(F_{\text{hitung}} \leq F_{\text{tabel}}\), kita gagal menolak hipotesis nol, yang berarti tidak ada bukti yang cukup untuk menyimpulkan adanya perbedaan antar perlakuan.
Cara Pengerjaan
Membuat Data dan Model Linier
# Data Observasi
y <- c(3, 2, 4, 7, 6, 5) # Observasi
treatment <- factor(rep(1:3, each = 2)) # Faktor Perlakuan (1, 2, 3 dengan 2 ulangan)
# Membuat model linier
model <- lm(y ~ treatment)
# Ringkasan dari model
summary(model)##
## Call:
## lm(formula = y ~ treatment)
##
## Residuals:
## 1 2 3 4 5 6
## 0.5 -0.5 -1.5 1.5 0.5 -0.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5000 0.9574 2.611 0.0796 .
## treatment2 3.0000 1.3540 2.216 0.1135
## treatment3 3.0000 1.3540 2.216 0.1135
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.354 on 3 degrees of freedom
## Multiple R-squared: 0.6857, Adjusted R-squared: 0.4762
## F-statistic: 3.273 on 2 and 3 DF, p-value: 0.1762
ANOVA untuk Pengujian Hipotesis
Untuk menguji hipotesis nol menggunakan ANOVA, kita bisa menjalankan
fungsi anova():
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 2 12.0 6.0000 3.2727 0.1762
## Residuals 3 5.5 1.8333
Hasil ANOVA akan memberikan statistik F, nilai p, dan apakah kita bisa menolak atau menerima hipotesis nol.
Pengujian Kontras dengan
linearHypothesis()
## Loading required package: carData
# Matriks kontras untuk menguji H0: tau1 = tau2 dan tau2 = tau3
C <- rbind(c(1, -1, 0), c(0, 1, -1))
# Menguji hipotesis kontras
linearHypothesis(model, C)## Linear hypothesis test
##
## Hypothesis:
## (Intercept) - treatment2 = 0
## treatment2 - treatment3 = 0
##
## Model 1: restricted model
## Model 2: y ~ treatment
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 5 5.6111
## 2 3 5.5000 2 0.11111 0.0303 0.9704
Fungsi ini akan menghitung statistik uji untuk hipotesis kontras dan memberikan hasil apakah hipotesis bisa ditolak atau tidak.
Menghitung F-Hitung Secara Manual
# Menghitung matriks XtX dan XtY
XtX <- t(model.matrix(model)) %*% model.matrix(model)
XtY <- t(model.matrix(model)) %*% y
# Estimasi parameter (beta)
beta_hat <- solve(XtX) %*% XtY
# Matriks kontras
C <- matrix(c(1, -1, 0, 0, 1, -1), nrow = 2, byrow = TRUE)
# Menghitung F-hitung
s2 <- sum(resid(model)^2) / model$df.residual
F_value <- t(C %*% beta_hat) %*% solve(C %*% solve(XtX) %*% t(C)) %*% (C %*% beta_hat) / s2
F_value## [,1]
## [1,] 0.06060606
Contoh Soal
Pertimbangkan model klasifikasi satu arah dengan efek tetap dan \(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
\(H_0: \tau_1 = \tau_3 \text{ dan } \tau_1 - 2\tau_2 + \tau_3 = 0\)
\(H_0: \tau_1 = \tau_2 \text{ dan } \tau_1 = \tau_3 \text{ dan } 2\tau_1 - \tau_2 - \tau_3 = 0\)
- \(H_0: \tau_1 = \tau_3\) dan \(H_0: \tau_1 - 2\tau_2 + \tau_3 = 0\) apakah testable?
Jawaban:
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
b). apakah \[H_0: \tau_1 = \tau_2 \quad \text{dan} \quad \tau_1 = \tau_3 \quad \text{dan} \quad 2\tau_1 - \tau_2 - \tau_3 = 0\] testable?
Jawaban
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable ✓.
Latihan Soal Praktikum
Soal 1: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
\(H_0: \tau_1 + \tau_2 = 2\tau_3 \text{ dan } \tau_1 - \tau_2 = 0\)
\(H_0: \tau_1 = \tau_2 \text{ dan } \tau_3 = \tau_2 - \tau_1 \text{ dan } \tau_1 + \tau_3 = 0\)
Jawaban:
- \(H_0: \tau_1 + \tau_2 = 2\tau_3 \text{ dan } \tau_1 - \tau_2 = 0\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_1 = \tau_2 \text{ dan } \tau_3 = \tau_2 - \tau_1 \text{ dan } \tau_1 + \tau_3 = 0\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 2: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 = \tau_3 \text{ dan } 3\tau_2 - \tau_1 = \tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_1 = 2\tau_2 - \tau_3 \text{ dan } \tau_1 + \tau_2 = \tau_3\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 3: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 + \tau_2 = 3\tau_3 \text{ dan } \tau_1 - \tau_3 = \tau_2\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_2 = \tau_1 - \tau_3 \text{ dan } \tau_1 + \tau_2 = 0\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 4: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 = 2\tau_3 \text{ dan } \tau_1 - \tau_2 = \tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: 3\tau_1 = \tau_2 \text{ dan } \tau_1 + \tau_3 = 2\tau_2\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 5: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: 2\tau_1 - \tau_2 = \tau_3 \text{ dan } \tau_1 = \tau_2\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_1 = \tau_3 \text{ dan } \tau_2 - \tau_3 = \tau_1 - \tau_2\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 6: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 + 2\tau_2 = \tau_3 \text{ dan } \tau_2 = \tau_1 + \tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_1 - \tau_3 = \tau_2 \text{ dan } 2\tau_1 = \tau_3\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 7: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 = \tau_2 = \tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: 2\tau_1 + \tau_3 = \tau_2 \text{ dan } \tau_1 = \tau_2 - \tau_3\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 8: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 + \tau_3 = 2\tau_2 \text{ dan } \tau_1 = 2\tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_2 = 2\tau_1 - \tau_3 \text{ dan } \tau_3 = \tau_2 + \tau_1\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 9: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: \tau_1 + \tau_3 = \tau_2 \text{ dan } 3\tau_1 - 2\tau_2 = \tau_3\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_2 = \tau_3 \text{ dan } \tau_1 + \tau_2 = 3\tau_3\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]Sehingga \(C\) independen dan \(H_0\) testable ✓.
Soal 10: Pertimbangkan model klasifikasi satu arah dengan efek tetap
\(k = 3\). Periksa setiap hipotesis nol berikut untuk testability.
- \(H_0: 2\tau_1 = \tau_3 \text{ dan } \tau_2 + \tau_3 = \tau_1\)
Model statistik:
\[ y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad i = 1,2,3 \quad j = 1,2,...,n_i \]
\[ \tau_1 - 2\tau_2 + \tau_3 = 0 \]
\[ C_2 = \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} \]
\[ \tau_1 = \tau_3 \]
\[ C_1 = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ C = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 = 0 \] \[ \Rightarrow -2\alpha_1 + 0 = 0 \] \[ \Rightarrow \alpha_1 - \alpha_2 = 0 \]
Maka, kesimpulannya:
\[ \alpha_1 = \alpha_2 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable.
- \(H_0: \tau_1 = \tau_3 \text{ dan } \tau_1 + \tau_2 = 3\tau_3\)
\[ C = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & -1 & -1 \end{bmatrix} \quad \beta = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \]
\[ c_1\beta = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \beta = \tau_1 - \tau_2 \] \[ c_2\beta = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \beta = \tau_1 - \tau_3 \] \[ c_3\beta = \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} \beta = 2\tau_1 - \tau_2 - \tau_3 \]
\[ \alpha_1 \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 2 & -1 & -1 \end{bmatrix} = 0 \]
\[ \Rightarrow \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \] \[ \Rightarrow - \alpha_1 + 0 - \alpha_3 = 0 \] \[ \Rightarrow 0 - \alpha_2 - \alpha_3 = 0 \]
Maka:
\[ \alpha_1 = 0 \] \[ \alpha_1 = \alpha_2 = -\alpha_3 = 0 \] \[ \alpha_1 = \alpha_2 = \alpha_3 = 0 \]
Sehingga \(C\) independen dan \(H_0\) testable ✓.