#1 파일 및 패키지 준비
#install.packages("foreign")
library(foreign)
raw_welfare<-read.spss("https://www.dropbox.com/s/m2s7p3c5bvhvf5o/Koweps_hpc10_2015_beta1.sav?dl=1", to.data.frame=T)
## Warning in
## read.spss("https://www.dropbox.com/s/m2s7p3c5bvhvf5o/Koweps_hpc10_2015_beta1.sav?dl=1",
## : C:\Users\s\AppData\Local\Temp\RtmpSGzdZR\file4ac86a64475f: Compression bias
## (0) is not the usual value of 100
raw_welfare -> welfare
library(dplyr)
##
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
welfare <- rename(welfare, sex = h10_g3, # 성별
birth = h10_g4, # 태어난 연도
marriage = h10_g10, # 혼인 상태
religion = h10_g11, # 종교
income = p1002_8aq1, # 월급
code_job = h10_eco9, # 직종 코드
code_region = h10_reg7) # 지역 코드
welfare$birth <- ifelse(welfare$birth == 9999, NA, welfare$birth)
welfare$age <- 2015-welfare$birth +1
summary(welfare$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 28.00 50.00 48.43 70.00 109.00
#3 age group 짜기
welfare <- welfare %>%
mutate(ageg = ifelse(age < 30, "young",
ifelse(age <= 59, "middle" , "old")))
#4 결혼 나누기 및 이혼율 표 만들기
welfare$group_marriage <- ifelse(welfare$marriage == 1, "marriage",
ifelse(welfare$marriage== 3, "divorce", NA))
ageg_marriage <- welfare %>%
filter(!is.na(group_marriage)) %>%
group_by(ageg, group_marriage) %>%
summarise(n = n()) %>%
mutate(tot_group = sum(n),
pct= round(n/tot_group*100,1))
## `summarise()` has grouped output by 'ageg'. You can override using the
## `.groups` argument.
#install.packages("ggplot2")
library(ggplot2)
ageg_divorce <- ageg_marriage %>%
filter(ageg != "young" & group_marriage == "divorce") %>%
select(ageg, pct)
ggplot(data = ageg_divorce, aes(x= ageg, y= pct)) +geom_col()
list_region <- data.frame(code_region = c(1:7),
region= c("서울",
"수도권(인천/경기)",
"부산/경남/울산",
"대구/경북",
"대전/충남",
"강원/충북",
"광주/전남/전북/제주도"))
welfare <- left_join(welfare, list_region, by = "code_region")
welfare %>%
select(code_region,region) %>%
head
## code_region region
## 1 1 서울
## 2 1 서울
## 3 1 서울
## 4 1 서울
## 5 1 서울
## 6 1 서울
region_ageg <- welfare %>%
group_by(region, ageg) %>%
summarise(n= n()) %>%
mutate(tot_group = sum(n),
pct= round(n/tot_group*100, 2))
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
list_older_old <- region_ageg %>%
filter(ageg == "old") %>%
arrange(pct)
ggplot(data= region_ageg, aes(x = region, y=pct, fill = ageg)) + geom_col()+ coord_flip()+
scale_x_discrete(limits=order)
## Warning in min(x): min에 전달되는 인자들 중 누락이 있어 Inf를 반환합니다
## Warning in max(x): max에 전달되는 인자들 중 누락이 있어 -Inf를 반환합니다
## Warning in min(d[d > tolerance]): min에 전달되는 인자들 중 누락이 있어 Inf를
## 반환합니다
## Warning: Removed 21 rows containing missing values or values outside the scale range
## (`geom_col()`).