library(tidyverse)
library(tidyr)
library(plotly)
setwd("C:/Users/desir_7411ic3/Desktop/Montgomery College/DATA110/DATASETS-20240830T194929Z-001/DATASETS")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
latlong <- cities500|>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Category == "Prevention") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017)
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgomery City BRFSS Prevention
2 2017 CA California Concord City BRFSS Prevention
3 2017 CA California Concord City BRFSS Prevention
4 2017 CA California Fontana City BRFSS Prevention
5 2017 CA California Richmond Census Tract BRFSS Prevention
6 2017 FL Florida Davie Census Tract BRFSS Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean) [1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
prevention <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgome… City Prevent… 151000 Choles…
2 2017 CA California Concord City Prevent… 616000 Visits…
3 2017 CA California Concord City Prevent… 616000 Choles…
4 2017 CA California Fontana City Prevent… 624680 Visits…
5 2017 CA California Richmond Census Tract Prevent… 0660620… Choles…
6 2017 FL Florida Davie Census Tract Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
filter(StateAbbr=="MD")
head(md)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Chole…
2 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
3 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
4 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
5 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
6 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(md$CityName)[1] "Baltimore"
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with a cleaned dataset.
1. Once you run the above code, filter this dataset one more time for any particular subset with no more than 900 observations.
Filter chunk here
hw1 <- prevention %>%
filter(StateAbbr == "LA" & Short_Question_Text == "Cholesterol Screening")
hw1# A tibble: 383 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 LA Louisiana Baton Ro… Census Tract Prevent… 2205000… Choles…
2 2017 LA Louisiana Lake Cha… Census Tract Prevent… 2241155… Choles…
3 2017 LA Louisiana New Orle… Census Tract Prevent… 2255000… Choles…
4 2017 LA Louisiana Baton Ro… Census Tract Prevent… 2205000… Choles…
5 2017 LA Louisiana Baton Ro… Census Tract Prevent… 2205000… Choles…
6 2017 LA Louisiana Kenner Census Tract Prevent… 2239475… Choles…
7 2017 LA Louisiana New Orle… Census Tract Prevent… 2255000… Choles…
8 2017 LA Louisiana New Orle… Census Tract Prevent… 2255000… Choles…
9 2017 LA Louisiana Lafayette Census Tract Prevent… 2240735… Choles…
10 2017 LA Louisiana Lake Cha… Census Tract Prevent… 2241155… Choles…
# ℹ 373 more rows
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
tract_only <- hw1 %>%
filter(GeographicLevel == "Census Tract")
city_only <- hw1 %>%
filter(GeographicLevel == "City")2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
hw2 <- ggplot(tract_only, aes(CityName, Data_Value, color = CityName)) +
geom_point(shape=17, size = 3) +
scale_color_brewer(palette = "Dark2") +
labs(x = "City Name",
y = "% Value",
title = "Est. % Adult Use of Cholesterol Screening Services",
subtitle = "Each shape represents a census tract in the noted city. This plot finds that the economically
diverse cities of Baton Rouge and New Orleans most likely contained census tracts with low
use of cholesterol screening services. Smaller, wealthier cities saw higher utilization rates.",
color = "City Name") +
theme(
plot.background = element_rect(fill = "lightgrey"),
panel.background = element_rect(fill = "grey"),
axis.title = element_text(face = 2),
legend.background = element_rect(fill = "lightgrey"),
legend.title = element_text(color = "black", size = 14),
legend.text = element_text(color = "black", size = 11),
legend.key.size = unit(0.75, units = "cm"),
panel.grid = element_line(color = "darkgrey")
)
hw2Warning: Removed 8 rows containing missing values or values outside the scale range
(`geom_point()`).
3. Now create a map of your subsetted dataset.
Load libraries for mapping
library(leaflet)
library(sf)
library(knitr)First map chunk here
map_plot <- leaflet() |>
setView(lat = 31.18, lng = -91.87, zoom = 7) |>
addProviderTiles("CartoDB.DarkMatter") |>
addCircles(
data = tract_only,
radius = sqrt(10^(tract_only$Data_Value/22)) *5,
color = "#ff7f50"
)Assuming "long" and "lat" are longitude and latitude, respectively
map_plot4. Refine your map to include a mouse-click tooltip
Refined map chunk here
map_popup <- paste0(
"<b>City: </b>", tract_only$CityName, "<br>",
"<b>Census Tract: </b>", tract_only$UniqueID, "<br>",
"<b>Data Value (%): </b>", tract_only$Data_Value, "<br>",
"<strong>Population: </strong>", tract_only$PopulationCount, "<br>"
)
map_w_popup <- leaflet() |>
setView(lat = 31.18, lng = -91.87, zoom = 7) |>
addProviderTiles("CartoDB.DarkMatter") |>
addCircles(
data = tract_only,
radius = sqrt(10^(tract_only$Data_Value/23)) *5,
color = "#ff7f50",
popup = map_popup
)Assuming "long" and "lat" are longitude and latitude, respectively
map_w_popup5. Write a paragraph
I decided to extract from the “Prevention” dataset info from Louisiana as it regards screening for cholesterol. What I noted was that the state’s major cities (Baton Rouge and New Orleans) had a wider range of data values. This indicates that these cities contained census tracts where the population, for reasons unspecified, did not make use of cholesterol screening services. In smaller, more affluent cities, the data notes higher usage of cholesterol screening services. In my mapped plot, I used the equation to do my best to show the differences in data values.