Waymet

Make bar graphs

data <- data.frame(
  waymet = c("Met Online", "Met Offline"),
  percent = c(18.9, 81.1)
)

data
       waymet percent
1  Met Online    18.9
2 Met Offline    81.1

Data in R

mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
library(palmerpenguins)

penguins
# A tibble: 344 × 8
   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct>   <fct>              <dbl>         <dbl>             <int>       <int>
 1 Adelie  Torgersen           39.1          18.7               181        3750
 2 Adelie  Torgersen           39.5          17.4               186        3800
 3 Adelie  Torgersen           40.3          18                 195        3250
 4 Adelie  Torgersen           NA            NA                  NA          NA
 5 Adelie  Torgersen           36.7          19.3               193        3450
 6 Adelie  Torgersen           39.3          20.6               190        3650
 7 Adelie  Torgersen           38.9          17.8               181        3625
 8 Adelie  Torgersen           39.2          19.6               195        4675
 9 Adelie  Torgersen           34.1          18.1               193        3475
10 Adelie  Torgersen           42            20.2               190        4250
# ℹ 334 more rows
# ℹ 2 more variables: sex <fct>, year <int>
library(gapminder)

gapminder
# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows
library(Lahman)

LahmanData
                  file      class   nobs nvar                     title
1          AllstarFull data.frame   5454    8         AllstarFull table
2          Appearances data.frame 110423   21         Appearances table
3       AwardsManagers data.frame    179    6      AwardsManagers table
4        AwardsPlayers data.frame   6531    6       AwardsPlayers table
5  AwardsShareManagers data.frame    425    7 AwardsShareManagers table
6   AwardsSharePlayers data.frame   6879    7  AwardsSharePlayers table
7              Batting data.frame 110495   22             Batting table
8          BattingPost data.frame  15879   22         BattingPost table
9       CollegePlaying data.frame  17350    3      CollegePlaying table
10            Fielding data.frame 147080   18            Fielding table
11          FieldingOF data.frame  12028    6          FieldingOF table
12     FieldingOFsplit data.frame  34563   18     FieldingOFsplit table
13        FieldingPost data.frame  15063   17         FieldingPost data
14          HallOfFame data.frame   4191    9  Hall of Fame Voting Data
15           HomeGames data.frame   3195    9           HomeGames table
16            Managers data.frame   3684   10            Managers table
17        ManagersHalf data.frame     93   10        ManagersHalf table
18               Parks data.frame    255    6               Parks table
19              People data.frame  20370   26              People table
20            Pitching data.frame  49430   30            Pitching table
21        PitchingPost data.frame   6308   30        PitchingPost table
22            Salaries data.frame  26428    5            Salaries table
23             Schools data.frame   1207    5             Schools table
24          SeriesPost data.frame    367    9          SeriesPost table
25               Teams data.frame   2985   48               Teams table
26     TeamsFranchises data.frame    120    4      TeamFranchises table
27           TeamsHalf data.frame     52   10           TeamsHalf table
library(fueleconomy)

common
# A tibble: 347 × 4
   make  model                n years
   <chr> <chr>            <int> <int>
 1 Acura Integra             42    16
 2 Acura Legend              28    10
 3 Acura MDX 4WD             12    12
 4 Acura NSX                 28    14
 5 Acura TSX                 27    11
 6 Audi  A4                  49    19
 7 Audi  A4 Avant quattro    49    15
 8 Audi  A4 quattro          66    19
 9 Audi  A6                  20    19
10 Audi  A6 Avant quattro    12    12
# ℹ 337 more rows