1 PREPARATION

data1=import("AIReflectionBW.NoMissingS1.sav")%>%data.table
#data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
#  mutate(
#    W.X1 = ifelse(W.X == 1, 1, 0),
#    W.X2 = ifelse(W.X == 2, 1, 0)
#  )
#head(data2[,.(W.X,W.X1,W.X2)],10)%>%print_table()

2 ILLUSTRATION-FULL MODEL: M ON X

2.1 Model

X=AI facilitated reflection (W.X)

M=WA.ProblemSolvingPonderingV

W=BA.AIServiceFailureV

2.2 Study 1

pmacroModel(1,labels=list(X="X0/1")) 

statisticalDiagram(1,labels=list(X="X0/1",XW="X0/1W"))

基于原始值的调节分析

\[Y=i_Y+b_1X+b_2W+b_3XW+e_Y\]

\[Y=i_y+(b_1+b_3W)X+b_2W+e_Y\]

判断标准:同号同向加强(++更正/–更负);异号反向削弱(+-不那么正/-+不那么负)

可以写成:

\[Y=i_y+f(W)X+b_2W+e_Y\]

S1=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.449 ***                                     2.447 ***                                
##                                        (0.100)                                       (0.390)                                   
## W.X                                    -0.121                                         0.530                                    
##                                        (0.082)                                       (0.321)                                   
## BA.AIOnlineCommunicationSkillsV                                                       0.235 **                                 
##                                                                                      (0.089)                                   
## W.X:BA.AIOnlineCommunicationSkillsV                                                  -0.153 *                                  
##                                                                                      (0.073)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.002                                         0.019                                    
## Conditional R^2                         0.496                                         0.502                                    
## AIC                                  2229.463                                      2231.960                                    
## BIC                                  2256.453                                      2267.947                                    
## Num. obs.                             664                                           664                                        
## Num. groups: B.ID                     166                                           166                                        
## Var: B.ID (Intercept)                   1.119                                         1.068                                    
## Var: B.ID W.X                           0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X              -0.037                                        -0.008                                    
## Var: Residual                           1.101                                         1.094                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  4.39   1 496  .037 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                       0.049 (0.115)  0.428  .669     [-0.176,  0.274]
##  4.260 (Mean)                      -0.121 (0.081) -1.491  .137     [-0.280,  0.038]
##  5.374 (+ SD)                      -0.291 (0.115) -2.536  .012 *   [-0.516, -0.066]
## ───────────────────────────────────────────────────────────────────────────────────
interact_plot(S1$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

2.3 Study 2

表10.1包含了两个模型的同归系数并总了统计量。前四行构建了指示符代码和两个乘积,以及剩余的行估计出:

\[\hat{Y}=i_Y+b_1 D_1+b_2 D_2+b_3\] \[\hat{Y}=i_Y+b_1 D_1+b_2 D_2+b_3 W+b_4 D_1 W+b_5 D_2 W\] 公式可改写为:

\[\hat{Y}=i_Y+(b_1 +b_4 W)D_1+(b_2+b_5 W)D_2 +b_3 W\]

pmacroModel(2,labels=list(X="X",W="X01",Z="X10")) 

statisticalDiagram(2,labels=list(X="W",W="X01",Z="X10"),whatLabel="label")

data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
data2$W.dX=as.factor(data2$W.X)
data2 <- data2 %>%
  mutate(
    W.X10 = ifelse(W.X == 1, 1, 0),
    W.X01 = ifelse(W.X == 2, 1, 0)
  )
data2=data2[, W.CheckDummyX := paste(W.Intervention_new,W.X,W.X10,W.X01, sep = "_")]
Freq(data2$W.CheckDummyX)
## Frequency Statistics:
## ───────────────────────────
##                      N    %
## ───────────────────────────
## AI_0_0_0           328 33.3
## No_1_1_0           328 33.3
## Traditional_2_0_1  328 33.3
## ───────────────────────────
## Total N = 984
data2=added(data2,{
  W.X10BA.AIOnlineCommunicationSkillsV=W.X10*BA.AIOnlineCommunicationSkillsV
  W.X01BA.AIOnlineCommunicationSkillsV=W.X01*BA.AIOnlineCommunicationSkillsV})

variables <- c(
  "BA.AIOnlineCommunicationSkillsV", "BA.StructureV", "BA.WayOfQuestioningV",
  "BA.ClarityOfInformationV", "BA.AIInteractionQualityV", "BA.ProblemSolvingConfidenceV",
  "BA.NeedForPersonalizationDueToAIV", "BA.ReflectionOnAIUseV", "BA.CapabilityV",
  "BA.PositiveReflectionOnAIUseV", "BA.NegativeReflectionOnAIUseV", "BB.AIUsageV",
  "BB.AITechnologyAnxietyV", "BB.TrustInAIV", "BA.EffectivenessV",
  "BA.QualityV", "BA.PersonalControlV", "BA.AIServiceFailureV",
  "BA.AnthropomorphismV"
)


# 使用 lapply 和 := 动态创建交乘项变量
data2=data2[, paste0("W.X10", variables) := lapply(.SD, function(x) W.X10 * x), .SDcols = variables]

data2=data2[, paste0("W.X01", variables) := lapply(.SD, function(x) W.X01 * x), .SDcols = variables]

# 查看结果
#print(names(data2))

2.3.1 Treating W.X as moderator

data2$W.X=as.factor(data2$W.X)
S2=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="BA.AIOnlineCommunicationSkillsV", mods="W.X", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : BA.AIOnlineCommunicationSkillsV
## -  Mediators (M) : -
## - Moderators (W) : W.X
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ BA.AIOnlineCommunicationSkillsV*W.X + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                       (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.956 ***                                     1.511 ***                                
##                                         (0.349)                                       (0.375)                                   
## BA.AIOnlineCommunicationSkillsV          0.348 ***                                     0.447 ***                                
##                                         (0.079)                                       (0.085)                                   
## W.X1                                                                                   0.692 **                                 
##                                                                                       (0.259)                                   
## W.X2                                                                                   0.699 **                                 
##                                                                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV:W.X1                                                  -0.154 **                                 
##                                                                                       (0.059)                                   
## BA.AIOnlineCommunicationSkillsV:W.X2                                                  -0.155 **                                 
##                                                                                       (0.059)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.076                                         0.077                                    
## Conditional R^2                          0.683                                         0.687                                    
## AIC                                   2931.920                                      2944.105                                    
## BIC                                   2975.890                                      3007.617                                    
## Num. obs.                              978                                           978                                        
## Num. groups: B.ID                      163                                           163                                        
## Var: B.ID (Intercept)                    1.291                                         1.294                                    
## Var: B.ID W.X1                           0.078                                         0.084                                    
## Var: B.ID W.X2                           0.084                                         0.090                                    
## Cov: B.ID (Intercept) W.X1               0.039                                         0.038                                    
## Cov: B.ID (Intercept) W.X2              -0.011                                        -0.012                                    
## Cov: B.ID W.X1 W.X2                     -0.081                                        -0.087                                    
## Var: Residual                            0.712                                         0.702                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## BA.AIOnlineCommunicationSkillsV * W.X  5.15   2 257  .006 ** 
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "BA.AIOnlineCommunicationSkillsV" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────
##  "W.X" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────
##  0      0.447 (0.085) 5.263 <.001 *** [0.280, 0.613]
##  1      0.293 (0.089) 3.297  .001 **  [0.119, 0.467]
##  2      0.292 (0.087) 3.370 <.001 *** [0.122, 0.461]
## ────────────────────────────────────────────────────

2.3.2 Treating W.X as X

S2.i=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X01                                     0.212                                         0.699 **                                 
##                                          (0.239)                                       (0.260)                                   
## W.X01BA.AIOnlineCommunicationSkillsV     -0.040                                        -0.155 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X10                                     0.038                                         0.692 **                                 
##                                          (0.070)                                       (0.259)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X10:BA.AIOnlineCommunicationSkillsV                                                  -0.154 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.000                                         0.077                                    
## Conditional R^2                           0.685                                         0.687                                    
## AIC                                    2960.196                                      2944.105                                    
## BIC                                    3013.937                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.552                                         1.294                                    
## Var: B.ID W.X10                           0.087                                         0.084                                    
## Var: B.ID W.X01                           0.087                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.040                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.066                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.083                                        -0.087                                    
## Var: Residual                             0.710                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  6.84   1 340  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.220 (0.095)  2.308  .021 *   [ 0.033, 0.406]
##  4.260 (Mean)                       0.038 (0.067)  0.565  .572     [-0.094, 0.170]
##  5.444 (+ SD)                      -0.144 (0.095) -1.510  .132     [-0.330, 0.043]
## ──────────────────────────────────────────────────────────────────────────────────
S2.ii=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X10                                     0.274                                         0.692 **                                 
##                                          (0.241)                                       (0.259)                                   
## W.X10BA.AIOnlineCommunicationSkillsV     -0.055                                        -0.154 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X01                                     0.039                                         0.699 **                                 
##                                          (0.070)                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X01:BA.AIOnlineCommunicationSkillsV                                                  -0.155 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                                         0.077                                    
## Conditional R^2                           0.686                                         0.687                                    
## AIC                                    2959.761                                      2944.105                                    
## BIC                                    3013.501                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.553                                         1.294                                    
## Var: B.ID W.X10                           0.079                                         0.084                                    
## Var: B.ID W.X01                           0.096                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.008                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.092                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.084                                        -0.087                                    
## Var: Residual                             0.709                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  6.92   1 329  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.223 (0.103)  2.162  .032 *   [ 0.021, 0.425]
##  4.260 (Mean)                       0.039 (0.073)  0.539  .590     [-0.103, 0.182]
##  5.444 (+ SD)                      -0.144 (0.103) -1.400  .163     [-0.346, 0.058]
## ──────────────────────────────────────────────────────────────────────────────────
interact_plot(S2.i$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S2.ii$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

model_summary(list(S1$model.y,S2$model.y))#,S2.i$model.y,S2.ii$model.y))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                       (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.447 ***                                     1.511 ***                                
##                                         (0.390)                                       (0.375)                                   
## W.X                                      0.530                                                                                  
##                                         (0.321)                                                                                 
## BA.AIOnlineCommunicationSkillsV          0.235 **                                      0.447 ***                                
##                                         (0.089)                                       (0.085)                                   
## W.X:BA.AIOnlineCommunicationSkillsV     -0.153 *                                                                                
##                                         (0.073)                                                                                 
## W.X1                                                                                   0.692 **                                 
##                                                                                       (0.259)                                   
## W.X2                                                                                   0.699 **                                 
##                                                                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV:W.X1                                                  -0.154 **                                 
##                                                                                       (0.059)                                   
## BA.AIOnlineCommunicationSkillsV:W.X2                                                  -0.155 **                                 
##                                                                                       (0.059)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.019                                         0.077                                    
## Conditional R^2                          0.502                                         0.687                                    
## AIC                                   2231.960                                      2944.105                                    
## BIC                                   2267.947                                      3007.617                                    
## Num. obs.                              664                                           978                                        
## Num. groups: B.ID                      166                                           163                                        
## Var: B.ID (Intercept)                    1.068                                         1.294                                    
## Var: B.ID W.X                            0.000                                                                                  
## Cov: B.ID (Intercept) W.X               -0.008                                                                                  
## Var: Residual                            1.094                                         0.702                                    
## Var: B.ID W.X1                                                                         0.084                                    
## Var: B.ID W.X2                                                                         0.090                                    
## Cov: B.ID (Intercept) W.X1                                                             0.038                                    
## Cov: B.ID (Intercept) W.X2                                                            -0.012                                    
## Cov: B.ID W.X1 W.X2                                                                   -0.087                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

\(\theta_{D_1\rightarrow Y}=b_1+b_4W=-.604+.162W\):相对于不干预的条件,即那些被AI干预与没有干预的人M的差异。

  • 总体解读:一个正向的估计值反映了在那些被AI干预的人M更高;而负向的估计意味着与被AI干预的人相比,那些没有干预的人M更高。

  • \(D_1\) 的系数 (\(b_1\)):在性别歧视得分为零时(W=0),相对于不干预,AI干预对M的影响。负向估计值-.604意味着AI干预M更低。

  • 交互项 \(D_1 \times W\) 的系数 (\(b_4\)):

  • 意义:它量化了这个相对条件效应随着W变化一个单位而变化的程度。AI干预与W的交互效应。

  • b4=.162:说明W每增加一个单位,AI干预对M的影响增加.162个单位。此交互项显著,表明W调节了AI干预的影响。

  • 判断标准:同号同向加强(++更正/–更负);异号反向削弱(+-不那么正/-+不那么负)

\(\theta_{D_2\rightarrow Y}=b_2+b_5 W\)有类似的解释

3 STUDY 1 USING .05 AS STANDARD

3.1 Analysis

S1.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.449 ***                                     2.447 ***                                
##                                        (0.100)                                       (0.390)                                   
## W.X                                    -0.121                                         0.530                                    
##                                        (0.082)                                       (0.321)                                   
## BA.AIOnlineCommunicationSkillsV                                                       0.235 **                                 
##                                                                                      (0.089)                                   
## W.X:BA.AIOnlineCommunicationSkillsV                                                  -0.153 *                                  
##                                                                                      (0.073)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.002                                         0.019                                    
## Conditional R^2                         0.496                                         0.502                                    
## AIC                                  2229.463                                      2231.960                                    
## BIC                                  2256.453                                      2267.947                                    
## Num. obs.                             664                                           664                                        
## Num. groups: B.ID                     166                                           166                                        
## Var: B.ID (Intercept)                   1.119                                         1.068                                    
## Var: B.ID W.X                           0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X              -0.037                                        -0.008                                    
## Var: Residual                           1.101                                         1.094                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  4.39   1 496  .037 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                       0.049 (0.115)  0.428  .669     [-0.176,  0.274]
##  4.260 (Mean)                      -0.121 (0.081) -1.491  .137     [-0.280,  0.038]
##  5.374 (+ SD)                      -0.291 (0.115) -2.536  .012 *   [-0.516, -0.066]
## ───────────────────────────────────────────────────────────────────────────────────
S1.WP.SystemPerformanceImprovementBehaviorVBA.StructureV=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.StructureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.StructureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.449 ***                                     2.547 ***                                
##                              (0.100)                                       (0.345)                                   
## W.X                          -0.121                                         0.443                                    
##                              (0.082)                                       (0.284)                                   
## BA.StructureV                                                               0.218 **                                 
##                                                                            (0.080)                                   
## W.X:BA.StructureV                                                          -0.136 *                                  
##                                                                            (0.066)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                         0.020                                    
## Conditional R^2               0.496                                         0.502                                    
## AIC                        2229.463                                      2232.115                                    
## BIC                        2256.453                                      2268.102                                    
## Num. obs.                   664                                           664                                        
## Num. groups: B.ID           166                                           166                                        
## Var: B.ID (Intercept)         1.119                                         1.064                                    
## Var: B.ID W.X                 0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X    -0.037                                        -0.007                                    
## Var: Residual                 1.101                                         1.095                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X * BA.StructureV  4.28   1 496  .039 *  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.902 (- SD)     0.047 (0.115)  0.410  .682     [-0.178,  0.272]
##  4.136 (Mean)    -0.121 (0.081) -1.491  .137     [-0.280,  0.038]
##  5.369 (+ SD)    -0.289 (0.115) -2.517  .012 *   [-0.514, -0.064]
## ─────────────────────────────────────────────────────────────────
S1.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.WayOfQuestioningV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.WayOfQuestioningV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.449 ***                                     2.660 ***                                
##                              (0.100)                                       (0.372)                                   
## W.X                          -0.121                                         0.456                                    
##                              (0.082)                                       (0.304)                                   
## BA.WayOfQuestioningV                                                        0.182 *                                  
##                                                                            (0.083)                                   
## W.X:BA.WayOfQuestioningV                                                   -0.133 *                                  
##                                                                            (0.068)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                         0.013                                    
## Conditional R^2               0.496                                         0.501                                    
## AIC                        2229.463                                      2234.244                                    
## BIC                        2256.453                                      2270.230                                    
## Num. obs.                   664                                           664                                        
## Num. groups: B.ID           166                                           166                                        
## Var: B.ID (Intercept)         1.119                                         1.088                                    
## Var: B.ID W.X                 0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X    -0.037                                        -0.016                                    
## Var: Residual                 1.101                                         1.095                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────
##                                F df1 df2     p    
## ──────────────────────────────────────────────────
## W.X * BA.WayOfQuestioningV  3.88   1 496  .049 *  
## ──────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  3.130 (- SD)            0.039 (0.115)  0.340  .734     [-0.186,  0.264]
##  4.331 (Mean)           -0.121 (0.081) -1.490  .137     [-0.280,  0.038]
##  5.533 (+ SD)           -0.281 (0.115) -2.447  .015 *   [-0.506, -0.056]
## ────────────────────────────────────────────────────────────────────────
S1.WA.AffectiveRuminationVBA.ClarityOfInformationV=PROCESS(data1, y="WA.AffectiveRuminationV", x="W.X", mods="BA.ClarityOfInformationV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X*BA.ClarityOfInformationV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                               (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.798 ***                    4.194 ***               
##                                 (0.117)                      (0.423)                  
## W.X                              0.017                       -0.586 *                 
##                                 (0.074)                      (0.265)                  
## BA.ClarityOfInformationV                                     -0.092                   
##                                                              (0.094)                  
## W.X:BA.ClarityOfInformationV                                  0.140 *                 
##                                                              (0.059)                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.000                        0.003                   
## Conditional R^2                  0.680                        0.682                   
## AIC                           2171.687                     2176.983                   
## BIC                           2198.676                     2212.969                   
## Num. obs.                      664                          664                       
## Num. groups: B.ID              166                          166                       
## Var: B.ID (Intercept)            1.858                        1.859                   
## Var: B.ID W.X                    0.080                        0.055                   
## Cov: B.ID (Intercept) W.X       -0.111                       -0.094                   
## Var: Residual                    0.840                        0.840                   
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.ClarityOfInformationV  5.60   1 164  .019 *  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.068 (- SD)               -0.157 (0.104) -1.512  .132     [-0.361, 0.047]
##  4.313 (Mean)                0.017 (0.073)  0.230  .819     [-0.127, 0.161]
##  5.559 (+ SD)                0.191 (0.104)  1.837  .068 .   [-0.013, 0.395]
## ───────────────────────────────────────────────────────────────────────────
S1.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.782 ***                                  1.788 ***                             
##                                 (0.112)                                    (0.302)                                
## W.X                             -0.187 *                                    0.332                                 
##                                 (0.091)                                    (0.276)                                
## BA.AIInteractionQualityV                                                    0.500 ***                             
##                                                                            (0.072)                                
## W.X:BA.AIInteractionQualityV                                               -0.130 *                               
##                                                                            (0.065)                                
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.003                                      0.144                                 
## Conditional R^2                  0.483                                      0.486                                 
## AIC                           2364.000                                   2330.273                                 
## BIC                           2390.990                                   2366.259                                 
## Num. obs.                      664                                        664                                     
## Num. groups: B.ID              166                                        166                                     
## Var: B.ID (Intercept)            1.418                                      0.953                                 
## Var: B.ID W.X                    0.018                                      0.002                                 
## Cov: B.ID (Intercept) W.X       -0.159                                     -0.048                                 
## Var: Residual                    1.365                                      1.362                                 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  3.96   1 492  .047 *  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)               -0.006 (0.128) -0.048  .962     [-0.258,  0.245]
##  3.986 (Mean)               -0.187 (0.091) -2.060  .040 *   [-0.364, -0.009]
##  5.372 (+ SD)               -0.367 (0.128) -2.864  .004 **  [-0.619, -0.116]
## ────────────────────────────────────────────────────────────────────────────
S1.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV=PROCESS(data1, y="WA.SelfReflectionForManipulationCheckV", x="W.X", mods="BA.ProblemSolvingConfidenceV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.SelfReflectionForManipulationCheckV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.SelfReflectionForManipulationCheckV ~ W.X*BA.ProblemSolvingConfidenceV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                   (1) WA.SelfReflectionForManipulationCheckV  (2) WA.SelfReflectionForManipulationCheckV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                          4.404 ***                                   1.760 ***                              
##                                     (0.097)                                     (0.387)                                 
## W.X                                 -0.064                                       0.601                                  
##                                     (0.072)                                     (0.323)                                 
## BA.ProblemSolvingConfidenceV                                                     0.606 ***                              
##                                                                                 (0.087)                                 
## W.X:BA.ProblemSolvingConfidenceV                                                -0.153 *                                
##                                                                                 (0.072)                                 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.001                                       0.151                                  
## Conditional R^2                      0.547                                       0.549                                  
## AIC                               2076.540                                    2042.771                                  
## BIC                               2103.530                                    2078.757                                  
## Num. obs.                          664                                         664                                      
## Num. groups: B.ID                  166                                         166                                      
## Var: B.ID (Intercept)                1.135                                       0.788                                  
## Var: B.ID W.X                        0.015                                       0.003                                  
## Cov: B.ID (Intercept) W.X           -0.132                                      -0.050                                  
## Var: Residual                        0.839                                       0.837                                  
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.SelfReflectionForManipulationCheckV" (Y)
## ──────────────────────────────────────────────────────────
##                                        F df1 df2     p    
## ──────────────────────────────────────────────────────────
## W.X * BA.ProblemSolvingConfidenceV  4.45   1 487  .035 *  
## ──────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.SelfReflectionForManipulationCheckV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  3.374 (- SD)                    0.086 (0.101)  0.856  .392     [-0.111,  0.284]
##  4.359 (Mean)                   -0.064 (0.071) -0.899  .369     [-0.203,  0.075]
##  5.344 (+ SD)                   -0.214 (0.101) -2.128  .034 *   [-0.412, -0.017]
## ────────────────────────────────────────────────────────────────────────────────
S1.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV=PROCESS(data1, y="WP.AIEnabledInnovationBehaviorV", x="W.X", mods="BA.WayOfQuestioningV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X*BA.WayOfQuestioningV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.437 ***                            2.523 ***                       
##                              (0.109)                              (0.404)                          
## W.X                          -0.269 **                             0.390                           
##                              (0.087)                              (0.325)                          
## BA.WayOfQuestioningV                                               0.211 *                         
##                                                                   (0.090)                          
## W.X:BA.WayOfQuestioningV                                          -0.152 *                         
##                                                                   (0.072)                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.007                                0.020                           
## Conditional R^2               0.514                                0.519                           
## AIC                        2325.675                             2329.269                           
## BIC                        2352.665                             2365.255                           
## Num. obs.                   664                                  664                               
## Num. groups: B.ID           166                                  166                               
## Var: B.ID (Intercept)         1.352                                1.309                           
## Var: B.ID W.X                 0.001                                0.000                           
## Cov: B.ID (Intercept) W.X    -0.041                               -0.012                           
## Var: Residual                 1.259                                1.251                           
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ──────────────────────────────────────────────────
##                                F df1 df2     p    
## ──────────────────────────────────────────────────
## W.X * BA.WayOfQuestioningV  4.42   1 496  .036 *  
## ──────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  3.130 (- SD)           -0.086 (0.123) -0.701  .484     [-0.327,  0.155]
##  4.331 (Mean)           -0.269 (0.087) -3.095  .002 **  [-0.439, -0.099]
##  5.533 (+ SD)           -0.451 (0.123) -3.675 <.001 *** [-0.692, -0.211]
## ────────────────────────────────────────────────────────────────────────
S1.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV=PROCESS(data1, y="WP.AIEnabledCreativityV", x="W.X", mods="BA.NeedForPersonalizationDueToAIV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X*BA.NeedForPersonalizationDueToAIV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.677 ***                    2.216 ***               
##                                          (0.116)                      (0.335)                  
## W.X                                      -0.225 *                      0.552 *                 
##                                          (0.088)                      (0.264)                  
## BA.NeedForPersonalizationDueToAIV                                      0.355 ***               
##                                                                       (0.077)                  
## W.X:BA.NeedForPersonalizationDueToAIV                                 -0.189 **                
##                                                                       (0.061)                  
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.005                        0.062                   
## Conditional R^2                           0.536                        0.544                   
## AIC                                    2336.662                     2326.359                   
## BIC                                    2363.652                     2362.345                   
## Num. obs.                               664                          664                       
## Num. groups: B.ID                       166                          166                       
## Var: B.ID (Intercept)                     1.604                        1.380                   
## Var: B.ID W.X                             0.019                        0.004                   
## Cov: B.ID (Intercept) W.X                -0.175                       -0.073                   
## Var: Residual                             1.256                        1.239                   
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X * BA.NeedForPersonalizationDueToAIV  9.70   1 489  .002 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────────
##  2.683 (- SD)                         0.045 (0.122)  0.364  .716     [-0.195,  0.284]
##  4.110 (Mean)                        -0.225 (0.087) -2.602  .010 **  [-0.395, -0.056]
##  5.536 (+ SD)                        -0.495 (0.122) -4.042 <.001 *** [-0.735, -0.255]
## ─────────────────────────────────────────────────────────────────────────────────────
S1.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV=PROCESS(data1, y="WP.VoiceForSystemImprovmentV", x="W.X", mods="BA.NeedForPersonalizationDueToAIV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X*BA.NeedForPersonalizationDueToAIV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.646 ***                         2.593 ***                    
##                                          (0.107)                           (0.318)                       
## W.X                                      -0.156                             0.304                        
##                                          (0.080)                           (0.242)                       
## BA.NeedForPersonalizationDueToAIV                                           0.256 ***                    
##                                                                            (0.073)                       
## W.X:BA.NeedForPersonalizationDueToAIV                                      -0.112 *                      
##                                                                            (0.056)                       
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.003                             0.039                        
## Conditional R^2                           0.563                             0.568                        
## AIC                                    2236.569                          2235.592                        
## BIC                                    2263.558                          2271.578                        
## Num. obs.                               664                               664                            
## Num. groups: B.ID                       166                               166                            
## Var: B.ID (Intercept)                     1.391                             1.277                        
## Var: B.ID W.X                             0.001                             0.000                        
## Cov: B.ID (Intercept) W.X                -0.037                             0.006                        
## Var: Residual                             1.054                             1.048                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X * BA.NeedForPersonalizationDueToAIV  4.03   1 496  .045 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────────
##  2.683 (- SD)                         0.004 (0.112)  0.031  .975     [-0.217,  0.224]
##  4.110 (Mean)                        -0.156 (0.079) -1.963  .050 .   [-0.312, -0.000]
##  5.536 (+ SD)                        -0.316 (0.112) -2.807  .005 **  [-0.536, -0.095]
## ─────────────────────────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.707 ***                                          2.143 ***                                     
##                              (0.107)                                            (0.333)                                        
## W.X                          -0.154                                              0.357                                         
##                              (0.082)                                            (0.271)                                        
## BA.ReflectionOnAIUseV                                                            0.390 ***                                     
##                                                                                 (0.079)                                        
## W.X:BA.ReflectionOnAIUseV                                                       -0.127 *                                       
##                                                                                 (0.064)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                              0.077                                         
## Conditional R^2               0.532                                              0.536                                         
## AIC                        2256.283                                           2244.539                                         
## BIC                        2283.273                                           2280.525                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.352                                              1.124                                         
## Var: B.ID W.X                 0.006                                              0.001                                         
## Cov: B.ID (Intercept) W.X    -0.093                                             -0.027                                         
## Var: Residual                 1.115                                              1.110                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  3.92   1 495  .048 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.008 (0.116)  0.072  .942     [-0.218,  0.235]
##  4.013 (Mean)            -0.154 (0.082) -1.878  .061 .   [-0.314,  0.007]
##  5.286 (+ SD)            -0.316 (0.116) -2.727  .007 **  [-0.542, -0.089]
## ─────────────────────────────────────────────────────────────────────────
S1.WP.AIEnabledCreativityVBA.CapabilityV=PROCESS(data1, y="WP.AIEnabledCreativityV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.677 ***                    1.903 ***               
##                              (0.116)                      (0.331)                  
## W.X                          -0.225 *                      0.483                   
##                              (0.088)                      (0.269)                  
## BA.CapabilityV                                             0.423 ***               
##                                                           (0.075)                  
## W.X:BA.CapabilityV                                        -0.169 **                
##                                                           (0.061)                  
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.005                        0.096                   
## Conditional R^2               0.536                        0.542                   
## AIC                        2336.662                     2318.400                   
## BIC                        2363.652                     2354.386                   
## Num. obs.                   664                          664                       
## Num. groups: B.ID           166                          166                       
## Var: B.ID (Intercept)         1.604                        1.266                   
## Var: B.ID W.X                 0.019                        0.003                   
## Cov: B.ID (Intercept) W.X    -0.175                       -0.057                   
## Var: Residual                 1.256                        1.245                   
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  7.73   1 492  .006 ** 
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────
##  2.768 (- SD)      0.016 (0.123)  0.131  .896     [-0.224,  0.256]
##  4.197 (Mean)     -0.225 (0.087) -2.598  .010 **  [-0.395, -0.055]
##  5.625 (+ SD)     -0.466 (0.123) -3.803 <.001 *** [-0.707, -0.226]
## ──────────────────────────────────────────────────────────────────
S1.WP.AIEnabledInnovationBehaviorVBA.StructureV=PROCESS(data1, y="WP.AIEnabledInnovationBehaviorV", x="W.X", mods="BA.StructureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X*BA.StructureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.437 ***                            2.530 ***                       
##                              (0.109)                              (0.377)                          
## W.X                          -0.269 **                             0.419                           
##                              (0.087)                              (0.304)                          
## BA.StructureV                                                      0.220 *                         
##                                                                   (0.087)                          
## W.X:BA.StructureV                                                 -0.166 *                         
##                                                                   (0.070)                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.007                                0.022                           
## Conditional R^2               0.514                                0.520                           
## AIC                        2325.675                             2328.020                           
## BIC                        2352.665                             2364.006                           
## Num. obs.                   664                                  664                               
## Num. groups: B.ID           166                                  166                               
## Var: B.ID (Intercept)         1.352                                1.303                           
## Var: B.ID W.X                 0.001                                0.000                           
## Cov: B.ID (Intercept) W.X    -0.041                               -0.008                           
## Var: Residual                 1.259                                1.248                           
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X * BA.StructureV  5.59   1 496  .018 *  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.902 (- SD)    -0.063 (0.123) -0.517  .605     [-0.304,  0.177]
##  4.136 (Mean)    -0.269 (0.087) -3.099  .002 **  [-0.439, -0.099]
##  5.369 (+ SD)    -0.474 (0.123) -3.863 <.001 *** [-0.714, -0.233]
## ─────────────────────────────────────────────────────────────────
S1.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data1, y="WP.AIEnabledInnovationBehaviorV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.437 ***                            2.262 ***                       
##                                        (0.109)                              (0.424)                          
## W.X                                    -0.269 **                             0.436                           
##                                        (0.087)                              (0.343)                          
## BA.AIOnlineCommunicationSkillsV                                              0.276 **                        
##                                                                             (0.096)                          
## W.X:BA.AIOnlineCommunicationSkillsV                                         -0.165 *                         
##                                                                             (0.078)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.007                                0.028                           
## Conditional R^2                         0.514                                0.519                           
## AIC                                  2325.675                             2326.829                           
## BIC                                  2352.665                             2362.815                           
## Num. obs.                             664                                  664                               
## Num. groups: B.ID                     166                                  166                               
## Var: B.ID (Intercept)                   1.352                                1.279                           
## Var: B.ID W.X                           0.001                                0.000                           
## Cov: B.ID (Intercept) W.X              -0.041                               -0.003                           
## Var: Residual                           1.259                                1.250                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  4.50   1 496  .034 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                      -0.084 (0.123) -0.688  .492     [-0.325,  0.156]
##  4.260 (Mean)                      -0.269 (0.087) -3.096  .002 **  [-0.439, -0.099]
##  5.374 (+ SD)                      -0.453 (0.123) -3.688 <.001 *** [-0.694, -0.212]
## ───────────────────────────────────────────────────────────────────────────────────

3.2 Plot

interact_plot(S1.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.SystemPerformanceImprovementBehaviorVBA.StructureV$model.y, W.X, BA.StructureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV$model.y, W.X, BA.WayOfQuestioningV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.AffectiveRuminationVBA.ClarityOfInformationV$model.y, W.X, BA.ClarityOfInformationV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV$model.y, W.X, BA.AIInteractionQualityV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV$model.y, W.X, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV$model.y, W.X, BA.WayOfQuestioningV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV$model.y, W.X, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV$model.y, W.X, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV$model.y, W.X, BA.ReflectionOnAIUseV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledCreativityVBA.CapabilityV$model.y, W.X, BA.CapabilityV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledInnovationBehaviorVBA.StructureV$model.y, W.X, BA.StructureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

4 STUDY 1 USING .10 AS STANDARD

4.1 Analysis

S1.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV=PROCESS(data1, y="WP.AIEnabledInnovationBehaviorV", x="W.X", mods="BA.NeedForPersonalizationDueToAIV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X*BA.NeedForPersonalizationDueToAIV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.437 ***                            2.268 ***                       
##                                          (0.109)                              (0.321)                          
## W.X                                      -0.269 **                             0.195                           
##                                          (0.087)                              (0.265)                          
## BA.NeedForPersonalizationDueToAIV                                              0.285 ***                       
##                                                                               (0.074)                          
## W.X:BA.NeedForPersonalizationDueToAIV                                         -0.113                           
##                                                                               (0.061)                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.007                                0.050                           
## Conditional R^2                           0.514                                0.518                           
## AIC                                    2325.675                             2322.542                           
## BIC                                    2352.665                             2358.528                           
## Num. obs.                               664                                  664                               
## Num. groups: B.ID                       166                                  166                               
## Var: B.ID (Intercept)                     1.352                                1.206                           
## Var: B.ID W.X                             0.001                                0.000                           
## Cov: B.ID (Intercept) W.X                -0.041                                0.009                           
## Var: Residual                             1.259                                1.253                           
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X * BA.NeedForPersonalizationDueToAIV  3.42   1 496  .065 .  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────────
##  2.683 (- SD)                        -0.108 (0.123) -0.877  .381     [-0.349,  0.133]
##  4.110 (Mean)                        -0.269 (0.087) -3.092  .002 **  [-0.439, -0.098]
##  5.536 (+ SD)                        -0.430 (0.123) -3.495 <.001 *** [-0.671, -0.189]
## ─────────────────────────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.PositiveReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.PositiveReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                    (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.707 ***                                          2.070 ***                                     
##                                      (0.107)                                            (0.300)                                        
## W.X                                  -0.154                                              0.293                                         
##                                      (0.082)                                            (0.250)                                        
## BA.PositiveReflectionOnAIUseV                                                            0.402 ***                                     
##                                                                                         (0.070)                                        
## W.X:BA.PositiveReflectionOnAIUseV                                                       -0.110                                         
##                                                                                         (0.058)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.002                                              0.106                                         
## Conditional R^2                       0.532                                              0.535                                         
## AIC                                2256.283                                           2236.859                                         
## BIC                                2283.273                                           2272.845                                         
## Num. obs.                           664                                                664                                             
## Num. groups: B.ID                   166                                                166                                             
## Var: B.ID (Intercept)                 1.352                                              1.046                                         
## Var: B.ID W.X                         0.006                                              0.000                                         
## Cov: B.ID (Intercept) W.X            -0.093                                             -0.019                                         
## Var: Residual                         1.115                                              1.111                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────
##                                         F df1 df2     p    
## ───────────────────────────────────────────────────────────
## W.X * BA.PositiveReflectionOnAIUseV  3.59   1 495  .059 .  
## ───────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  2.657 (- SD)                     0.001 (0.116)  0.013  .990     [-0.225,  0.228]
##  4.070 (Mean)                    -0.154 (0.082) -1.877  .061 .   [-0.314,  0.007]
##  5.483 (+ SD)                    -0.309 (0.116) -2.667  .008 **  [-0.536, -0.082]
## ─────────────────────────────────────────────────────────────────────────────────
S1.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV=PROCESS(data1, y="WP.VoiceForSystemImprovmentV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.646 ***                         2.725 ***                    
##                                        (0.107)                           (0.420)                       
## W.X                                    -0.156                             0.394                        
##                                        (0.080)                           (0.314)                       
## BA.AIOnlineCommunicationSkillsV                                           0.216 *                      
##                                                                          (0.095)                       
## W.X:BA.AIOnlineCommunicationSkillsV                                      -0.129                        
##                                                                          (0.071)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.003                             0.016                        
## Conditional R^2                         0.563                             0.567                        
## AIC                                  2236.569                          2240.939                        
## BIC                                  2263.558                          2276.925                        
## Num. obs.                             664                               664                            
## Num. groups: B.ID                     166                               166                            
## Var: B.ID (Intercept)                   1.391                             1.350                        
## Var: B.ID W.X                           0.001                             0.000                        
## Cov: B.ID (Intercept) W.X              -0.037                            -0.014                        
## Var: Residual                           1.054                             1.050                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  3.27   1 496  .071 .  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                      -0.012 (0.113) -0.108  .914     [-0.233,  0.208]
##  4.260 (Mean)                      -0.156 (0.080) -1.962  .050 .   [-0.312, -0.000]
##  5.374 (+ SD)                      -0.300 (0.113) -2.666  .008 **  [-0.520, -0.079]
## ───────────────────────────────────────────────────────────────────────────────────
S1.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.ClarityOfInformationV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.ClarityOfInformationV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.449 ***                                     2.667 ***                                
##                                 (0.100)                                       (0.357)                                   
## W.X                             -0.121                                         0.349                                    
##                                 (0.082)                                       (0.293)                                   
## BA.ClarityOfInformationV                                                       0.181 *                                  
##                                                                               (0.080)                                   
## W.X:BA.ClarityOfInformationV                                                  -0.109                                    
##                                                                               (0.065)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.002                                         0.015                                    
## Conditional R^2                  0.496                                         0.500                                    
## AIC                           2229.463                                      2234.762                                    
## BIC                           2256.453                                      2270.748                                    
## Num. obs.                      664                                           664                                        
## Num. groups: B.ID              166                                           166                                        
## Var: B.ID (Intercept)            1.119                                         1.082                                    
## Var: B.ID W.X                    0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X       -0.037                                        -0.016                                    
## Var: Residual                    1.101                                         1.098                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.ClarityOfInformationV  2.79   1 495  .096 .  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  3.068 (- SD)                0.015 (0.115)  0.128  .898     [-0.211,  0.240]
##  4.313 (Mean)               -0.121 (0.081) -1.489  .137     [-0.280,  0.038]
##  5.559 (+ SD)               -0.257 (0.115) -2.233  .026 *   [-0.482, -0.031]
## ────────────────────────────────────────────────────────────────────────────
S1.WP.VoiceForSystemImprovmentVBA.StructureV=PROCESS(data1, y="WP.VoiceForSystemImprovmentV", x="W.X", mods="BA.StructureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X*BA.StructureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ─────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.646 ***                         2.808 ***                    
##                              (0.107)                           (0.372)                       
## W.X                          -0.156                             0.291                        
##                              (0.080)                           (0.279)                       
## BA.StructureV                                                   0.203 *                      
##                                                                (0.086)                       
## W.X:BA.StructureV                                              -0.108                        
##                                                                (0.065)                       
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                             0.018                        
## Conditional R^2               0.563                             0.567                        
## AIC                        2236.569                          2241.275                        
## BIC                        2263.558                          2277.261                        
## Num. obs.                   664                               664                            
## Num. groups: B.ID           166                               166                            
## Var: B.ID (Intercept)         1.391                             1.344                        
## Var: B.ID W.X                 0.001                             0.000                        
## Cov: B.ID (Intercept) W.X    -0.037                            -0.014                        
## Var: Residual                 1.054                             1.051                        
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X * BA.StructureV  2.81   1 496  .094 .  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.902 (- SD)    -0.023 (0.113) -0.200  .841     [-0.243,  0.198]
##  4.136 (Mean)    -0.156 (0.080) -1.961  .050 .   [-0.312, -0.000]
##  5.369 (+ SD)    -0.289 (0.113) -2.572  .010 *   [-0.510, -0.069]
## ─────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.NegativeReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.NegativeReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.NegativeReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                    (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.707 ***                                          2.736 ***                                     
##                                      (0.107)                                            (0.320)                                        
## W.X                                  -0.154                                              0.254                                         
##                                      (0.082)                                            (0.251)                                        
## BA.NegativeReflectionOnAIUseV                                                            0.245 **                                      
##                                                                                         (0.076)                                        
## W.X:BA.NegativeReflectionOnAIUseV                                                       -0.103                                         
##                                                                                         (0.060)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.002                                              0.034                                         
## Conditional R^2                       0.532                                              0.535                                         
## AIC                                2256.283                                           2257.379                                         
## BIC                                2283.273                                           2293.365                                         
## Num. obs.                           664                                                664                                             
## Num. groups: B.ID                   166                                                166                                             
## Var: B.ID (Intercept)                 1.352                                              1.255                                         
## Var: B.ID W.X                         0.006                                              0.003                                         
## Cov: B.ID (Intercept) W.X            -0.093                                             -0.056                                         
## Var: Residual                         1.115                                              1.112                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────
##                                         F df1 df2     p    
## ───────────────────────────────────────────────────────────
## W.X * BA.NegativeReflectionOnAIUseV  2.96   1 491  .086 .  
## ───────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.NegativeReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  2.587 (- SD)                    -0.013 (0.116) -0.108  .914     [-0.240,  0.215]
##  3.956 (Mean)                    -0.154 (0.082) -1.875  .061 .   [-0.314,  0.007]
##  5.325 (+ SD)                    -0.295 (0.116) -2.543  .011 *   [-0.522, -0.068]
## ─────────────────────────────────────────────────────────────────────────────────
S1.WA.LearningFromErrorsVBB.AIUsageV=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BB.AIUsageV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BB.AIUsageV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BB.AIUsageV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.252 ***                   4.136 ***              
##                              (0.105)                     (0.223)                 
## W.X                           0.035                       0.301                  
##                              (0.074)                     (0.156)                 
## BB.AIUsageV                                               0.037                  
##                                                          (0.063)                 
## W.X:BB.AIUsageV                                          -0.085                  
##                                                          (0.044)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                       0.002                  
## Conditional R^2               0.618                       0.620                  
## AIC                        2163.529                    2172.037                  
## BIC                        2190.626                    2208.167                  
## Num. obs.                   676                         676                      
## Num. groups: B.ID           169                         169                      
## Var: B.ID (Intercept)         1.440                       1.447                  
## Var: B.ID W.X                 0.092                       0.078                  
## Cov: B.ID (Intercept) W.X    -0.142                      -0.137                  
## Var: Residual                 0.831                       0.831                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 676 (8 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────
##                       F df1 df2     p    
## ─────────────────────────────────────────
## W.X * BB.AIUsageV  3.75   1 167  .054 .  
## ─────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────
##  "BB.AIUsageV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────
##  1.457 (- SD)   0.177 (0.104)  1.705  .090 .   [-0.026, 0.380]
##  3.124 (Mean)   0.035 (0.073)  0.474  .636     [-0.109, 0.178]
##  4.791 (+ SD)  -0.107 (0.104) -1.035  .302     [-0.311, 0.096]
## ──────────────────────────────────────────────────────────────
S1.WA.LearningFromErrorsVBA.AIInteractionQualityV=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                               (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      4.291 ***                   2.688 ***              
##                                 (0.104)                     (0.290)                 
## W.X                              0.031                       0.410                  
##                                 (0.075)                     (0.226)                 
## BA.AIInteractionQualityV                                     0.402 ***              
##                                                             (0.069)                 
## W.X:BA.AIInteractionQualityV                                -0.095                  
##                                                             (0.054)                 
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.000                       0.114                  
## Conditional R^2                  0.612                       0.613                  
## AIC                           2122.701                    2102.870                  
## BIC                           2149.690                    2138.856                  
## Num. obs.                      664                         664                      
## Num. groups: B.ID              166                         166                      
## Var: B.ID (Intercept)            1.395                       1.092                  
## Var: B.ID W.X                    0.094                       0.082                  
## Cov: B.ID (Intercept) W.X       -0.131                      -0.060                  
## Var: Residual                    0.832                       0.832                  
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  3.16   1 164  .077 .  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)                0.163 (0.105)  1.552  .123     [-0.043, 0.369]
##  3.986 (Mean)                0.031 (0.074)  0.416  .678     [-0.115, 0.176]
##  5.372 (+ SD)               -0.101 (0.105) -0.963  .337     [-0.307, 0.105]
## ───────────────────────────────────────────────────────────────────────────
S1.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV=PROCESS(data1, y="WA.AffectiveRuminationV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ─────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.798 ***                    3.959 ***               
##                                        (0.117)                      (0.464)                  
## W.X                                     0.017                       -0.467                   
##                                        (0.074)                      (0.293)                  
## BA.AIOnlineCommunicationSkillsV                                     -0.038                   
##                                                                     (0.105)                  
## W.X:BA.AIOnlineCommunicationSkillsV                                  0.113                   
##                                                                     (0.066)                  
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.000                        0.002                   
## Conditional R^2                         0.680                        0.682                   
## AIC                                  2171.687                     2179.094                   
## BIC                                  2198.676                     2215.080                   
## Num. obs.                             664                          664                       
## Num. groups: B.ID                     166                          166                       
## Var: B.ID (Intercept)                   1.858                        1.870                   
## Var: B.ID W.X                           0.080                        0.070                   
## Cov: B.ID (Intercept) W.X              -0.111                       -0.109                   
## Var: Residual                           0.840                        0.840                   
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  2.91   1 164  .090 .  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                      -0.110 (0.105) -1.046  .297     [-0.315, 0.096]
##  4.260 (Mean)                       0.017 (0.074)  0.228  .820     [-0.128, 0.162]
##  5.374 (+ SD)                       0.143 (0.105)  1.368  .173     [-0.062, 0.349]
## ──────────────────────────────────────────────────────────────────────────────────
S1.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV=PROCESS(data1, y="WP.VoiceForSystemImprovmentV", x="W.X", mods="BA.ClarityOfInformationV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X*BA.ClarityOfInformationV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.646 ***                         2.942 ***                    
##                                 (0.107)                           (0.385)                       
## W.X                             -0.156                             0.312                        
##                                 (0.080)                           (0.287)                       
## BA.ClarityOfInformationV                                           0.163                        
##                                                                   (0.086)                       
## W.X:BA.ClarityOfInformationV                                      -0.108                        
##                                                                   (0.064)                       
## ────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.003                             0.012                        
## Conditional R^2                  0.563                             0.567                        
## AIC                           2236.569                          2242.798                        
## BIC                           2263.558                          2278.784                        
## Num. obs.                      664                               664                            
## Num. groups: B.ID              166                               166                            
## Var: B.ID (Intercept)            1.391                             1.366                        
## Var: B.ID W.X                    0.001                             0.000                        
## Cov: B.ID (Intercept) W.X       -0.037                            -0.020                        
## Var: Residual                    1.054                             1.050                        
## ────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.ClarityOfInformationV  2.88   1 495  .090 .  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  3.068 (- SD)               -0.021 (0.113) -0.186  .852     [-0.242,  0.200]
##  4.313 (Mean)               -0.156 (0.080) -1.961  .050 .   [-0.312, -0.000]
##  5.559 (+ SD)               -0.291 (0.113) -2.586  .010 **  [-0.512, -0.070]
## ────────────────────────────────────────────────────────────────────────────
S1.WP.LearningBehaviorVBB.AITechnologyAnxietyV=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BB.AITechnologyAnxietyV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BB.AITechnologyAnxietyV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BB.AITechnologyAnxietyV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.621 ***                 3.681 ***            
##                                (0.111)                   (0.236)               
## W.X                            -0.047                    -0.385 *              
##                                (0.093)                   (0.196)               
## BB.AITechnologyAnxietyV                                  -0.021                
##                                                          (0.074)               
## W.X:BB.AITechnologyAnxietyV                               0.120                
##                                                          (0.061)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                     0.005                
## Conditional R^2                 0.463                     0.468                
## AIC                          2432.341                  2439.308                
## BIC                          2459.438                  2475.438                
## Num. obs.                     676                       676                    
## Num. groups: B.ID             169                       169                    
## Var: B.ID (Intercept)           1.357                     1.376                
## Var: B.ID W.X                   0.011                     0.013                
## Cov: B.ID (Intercept) W.X      -0.124                    -0.135                
## Var: Residual                   1.439                     1.430                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 676 (8 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X * BB.AITechnologyAnxietyV  3.84   1 484  .051 .  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BB.AITechnologyAnxietyV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  1.306 (- SD)              -0.228 (0.131) -1.742  .082 .   [-0.484, 0.028]
##  2.811 (Mean)              -0.047 (0.092) -0.504  .614     [-0.228, 0.135]
##  4.315 (+ SD)               0.135 (0.131)  1.030  .304     [-0.122, 0.391]
## ──────────────────────────────────────────────────────────────────────────
S1.WP.PerceivedWorkGrowthVBB.TrustInAIV=PROCESS(data1, y="WP.PerceivedWorkGrowthV", x="W.X", mods="BB.TrustInAIV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.PerceivedWorkGrowthV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BB.TrustInAIV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.PerceivedWorkGrowthV ~ W.X*BB.TrustInAIV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.PerceivedWorkGrowthV  (2) WP.PerceivedWorkGrowthV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.996 ***                    3.309 ***               
##                              (0.108)                      (0.336)                  
## W.X                          -0.178 *                     -0.605 *                 
##                              (0.083)                      (0.260)                  
## BB.TrustInAIV                                              0.187 *                 
##                                                           (0.087)                  
## W.X:BB.TrustInAIV                                          0.117                   
##                                                           (0.067)                  
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                        0.041                   
## Conditional R^2               0.541                        0.545                   
## AIC                        2327.078                     2324.758                   
## BIC                        2354.175                     2360.887                   
## Num. obs.                   676                          676                       
## Num. groups: B.ID           169                          169                       
## Var: B.ID (Intercept)         1.391                        1.352                   
## Var: B.ID W.X                 0.001                        0.005                   
## Cov: B.ID (Intercept) W.X    -0.036                       -0.080                   
## Var: Residual                 1.158                        1.152                   
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 676 (8 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.PerceivedWorkGrowthV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X * BB.TrustInAIV  3.01   1 496  .083 .  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.PerceivedWorkGrowthV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BB.TrustInAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.437 (- SD)    -0.321 (0.117) -2.743  .006 **  [-0.551, -0.092]
##  3.669 (Mean)    -0.178 (0.083) -2.146  .032 *   [-0.340, -0.015]
##  4.900 (+ SD)    -0.034 (0.117) -0.290  .772     [-0.263,  0.195]
## ─────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.707 ***                                          2.785 ***                                     
##                                        (0.107)                                            (0.419)                                        
## W.X                                    -0.154                                              0.374                                         
##                                        (0.082)                                            (0.324)                                        
## BA.AIOnlineCommunicationSkillsV                                                            0.216 *                                       
##                                                                                           (0.095)                                        
## W.X:BA.AIOnlineCommunicationSkillsV                                                       -0.124                                         
##                                                                                           (0.074)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.002                                              0.017                                         
## Conditional R^2                         0.532                                              0.536                                         
## AIC                                  2256.283                                           2261.039                                         
## BIC                                  2283.273                                           2297.025                                         
## Num. obs.                             664                                                664                                             
## Num. groups: B.ID                     166                                                166                                             
## Var: B.ID (Intercept)                   1.352                                              1.309                                         
## Var: B.ID W.X                           0.006                                              0.004                                         
## Cov: B.ID (Intercept) W.X              -0.093                                             -0.070                                         
## Var: Residual                           1.115                                              1.111                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  2.83   1 489  .093 .  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                      -0.016 (0.116) -0.135  .893     [-0.243,  0.212]
##  4.260 (Mean)                      -0.154 (0.082) -1.874  .062 .   [-0.314,  0.007]
##  5.374 (+ SD)                      -0.292 (0.116) -2.514  .012 *   [-0.519, -0.064]
## ───────────────────────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.StructureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.StructureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.707 ***                                          2.820 ***                                     
##                              (0.107)                                            (0.370)                                        
## W.X                          -0.154                                              0.316                                         
##                              (0.082)                                            (0.287)                                        
## BA.StructureV                                                                    0.214 *                                       
##                                                                                 (0.086)                                        
## W.X:BA.StructureV                                                               -0.114                                         
##                                                                                 (0.066)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                              0.020                                         
## Conditional R^2               0.532                                              0.536                                         
## AIC                        2256.283                                           2260.500                                         
## BIC                        2283.273                                           2296.486                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.352                                              1.298                                         
## Var: B.ID W.X                 0.006                                              0.003                                         
## Cov: B.ID (Intercept) W.X    -0.093                                             -0.066                                         
## Var: Residual                 1.115                                              1.111                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X * BA.StructureV  2.91   1 490  .088 .  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.902 (- SD)    -0.014 (0.116) -0.117  .907     [-0.241,  0.214]
##  4.136 (Mean)    -0.154 (0.082) -1.875  .061 .   [-0.314,  0.007]
##  5.369 (+ SD)    -0.294 (0.116) -2.533  .012 *   [-0.521, -0.066]
## ─────────────────────────────────────────────────────────────────
S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV=PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.ClarityOfInformationV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.ClarityOfInformationV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.707 ***                                          2.958 ***                                     
##                                 (0.107)                                            (0.383)                                        
## W.X                             -0.154                                              0.362                                         
##                                 (0.082)                                            (0.295)                                        
## BA.ClarityOfInformationV                                                            0.174 *                                       
##                                                                                    (0.085)                                        
## W.X:BA.ClarityOfInformationV                                                       -0.120                                         
##                                                                                    (0.066)                                        
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.002                                              0.013                                         
## Conditional R^2                  0.532                                              0.536                                         
## AIC                           2256.283                                           2262.014                                         
## BIC                           2283.273                                           2298.000                                         
## Num. obs.                      664                                                664                                             
## Num. groups: B.ID              166                                                166                                             
## Var: B.ID (Intercept)            1.352                                              1.322                                         
## Var: B.ID W.X                    0.006                                              0.004                                         
## Cov: B.ID (Intercept) W.X       -0.093                                             -0.072                                         
## Var: Residual                    1.115                                              1.110                                         
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.ClarityOfInformationV  3.30   1 489  .070 .  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  3.068 (- SD)               -0.005 (0.116) -0.040  .968     [-0.232,  0.223]
##  4.313 (Mean)               -0.154 (0.082) -1.875  .061 .   [-0.314,  0.007]
##  5.559 (+ SD)               -0.303 (0.116) -2.611  .009 **  [-0.530, -0.075]
## ────────────────────────────────────────────────────────────────────────────
S1.WA.ErrorStrainVBA.EffectivenessV=PROCESS(data1, y="WA.ErrorStrainV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ErrorStrainV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ErrorStrainV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────
##                            (1) WA.ErrorStrainV  (2) WA.ErrorStrainV
## ───────────────────────────────────────────────────────────────────
## (Intercept)                   3.428 ***            2.695 ***       
##                              (0.104)              (0.308)          
## W.X                          -0.017                0.325           
##                              (0.073)              (0.220)          
## BA.EffectivenessV                                  0.187 *         
##                                                   (0.074)          
## W.X:BA.EffectivenessV                             -0.087           
##                                                   (0.053)          
## ───────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                0.019           
## Conditional R^2               0.598                0.602           
## AIC                        2139.426             2144.082           
## BIC                        2166.416             2180.068           
## Num. obs.                   664                  664               
## Num. groups: B.ID           166                  166               
## Var: B.ID (Intercept)         1.341                1.289           
## Var: B.ID W.X                 0.001                0.000           
## Cov: B.ID (Intercept) W.X    -0.027               -0.003           
## Var: Residual                 0.882                0.879           
## ───────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ErrorStrainV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  2.73   1 496  .099 .  
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ErrorStrainV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.544 (- SD)         0.103 (0.103)  0.999  .318     [-0.099, 0.305]
##  3.920 (Mean)        -0.017 (0.073) -0.240  .810     [-0.160, 0.125]
##  5.296 (+ SD)        -0.138 (0.103) -1.338  .182     [-0.340, 0.064]
## ────────────────────────────────────────────────────────────────────
S1.WP.VoiceForSystemImprovmentVBA.QualityV=PROCESS(data1, y="WP.VoiceForSystemImprovmentV", x="W.X", mods="BA.QualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.QualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X*BA.QualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ─────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.646 ***                         2.087 ***                    
##                              (0.107)                           (0.308)                       
## W.X                          -0.156                             0.236                        
##                              (0.080)                           (0.246)                       
## BA.QualityV                                                     0.382 ***                    
##                                                                (0.071)                       
## W.X:BA.QualityV                                                -0.096                        
##                                                                (0.057)                       
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                             0.094                        
## Conditional R^2               0.563                             0.566                        
## AIC                        2236.569                          2221.306                        
## BIC                        2263.558                          2257.292                        
## Num. obs.                   664                               664                            
## Num. groups: B.ID           166                               166                            
## Var: B.ID (Intercept)         1.391                             1.123                        
## Var: B.ID W.X                 0.001                             0.000                        
## Cov: B.ID (Intercept) W.X    -0.037                             0.021                        
## Var: Residual                 1.054                             1.050                        
## ─────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────
##                       F df1 df2     p    
## ─────────────────────────────────────────
## W.X * BA.QualityV  2.85   1 495  .092 .  
## ─────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────
##  "BA.QualityV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────
##  2.685 (- SD)  -0.022 (0.113) -0.193  .847     [-0.242,  0.199]
##  4.084 (Mean)  -0.156 (0.080) -1.961  .050 .   [-0.312, -0.000]
##  5.483 (+ SD)  -0.290 (0.113) -2.579  .010 *   [-0.511, -0.070]
## ───────────────────────────────────────────────────────────────
S1.WP.SocialLearningVBA.ProblemSolvingConfidenceV=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.ProblemSolvingConfidenceV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.ProblemSolvingConfidenceV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────
##                                   (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                          3.759 ***               1.473 ***          
##                                     (0.104)                 (0.438)             
## W.X                                 -0.178 *                 0.412              
##                                     (0.079)                 (0.359)             
## BA.ProblemSolvingConfidenceV                                 0.524 ***          
##                                                             (0.098)             
## W.X:BA.ProblemSolvingConfidenceV                            -0.136              
##                                                             (0.080)             
## ────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.004                   0.096              
## Conditional R^2                      0.535                   0.538              
## AIC                               2211.535                2194.776              
## BIC                               2238.525                2230.762              
## Num. obs.                          664                     664                  
## Num. groups: B.ID                  166                     166                  
## Var: B.ID (Intercept)                1.282                   1.028              
## Var: B.ID W.X                        0.007                   0.001              
## Cov: B.ID (Intercept) W.X           -0.097                  -0.036              
## Var: Residual                        1.040                   1.038              
## ────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────
##                                        F df1 df2     p    
## ──────────────────────────────────────────────────────────
## W.X * BA.ProblemSolvingConfidenceV  2.84   1 493  .092 .  
## ──────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  3.374 (- SD)                   -0.045 (0.112) -0.402  .688     [-0.264,  0.174]
##  4.359 (Mean)                   -0.178 (0.079) -2.256  .025 *   [-0.334, -0.023]
##  5.344 (+ SD)                   -0.312 (0.112) -2.787  .006 **  [-0.531, -0.093]
## ────────────────────────────────────────────────────────────────────────────────
S1.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV=PROCESS(data1, y="WP.AIUsageForFacilitatingWorkV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIUsageForFacilitatingWorkV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIUsageForFacilitatingWorkV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AIUsageForFacilitatingWorkV  (2) WP.AIUsageForFacilitatingWorkV
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   2.693 ***                           4.078 ***                      
##                              (0.116)                             (0.373)                         
## W.X                          -0.161                              -0.652 *                        
##                              (0.091)                             (0.304)                         
## BA.PersonalControlV                                              -0.340 ***                      
##                                                                  (0.087)                         
## W.X:BA.PersonalControlV                                           0.121                          
##                                                                  (0.071)                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                               0.052                          
## Conditional R^2               0.512                               0.514                          
## AIC                        2357.490                            2353.599                          
## BIC                        2384.480                            2389.585                          
## Num. obs.                   664                                 664                              
## Num. groups: B.ID           166                                 166                              
## Var: B.ID (Intercept)         1.586                               1.409                          
## Var: B.ID W.X                 0.072                               0.056                          
## Cov: B.ID (Intercept) W.X    -0.250                              -0.188                          
## Var: Residual                 1.313                               1.313                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIUsageForFacilitatingWorkV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  2.88   1 164  .091 .  
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIUsageForFacilitatingWorkV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.315 (0.128) -2.451  .015 *   [-0.567, -0.063]
##  4.072 (Mean)          -0.161 (0.091) -1.769  .079 .   [-0.339,  0.017]
##  5.350 (+ SD)          -0.006 (0.128) -0.049  .961     [-0.258,  0.245]
## ───────────────────────────────────────────────────────────────────────
S1.WP.AIEnabledCreativityVBA.PersonalControlV=PROCESS(data1, y="WP.AIEnabledCreativityV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.677 ***                    5.365 ***               
##                              (0.116)                      (0.364)                  
## W.X                          -0.225 *                     -0.703 *                 
##                              (0.088)                      (0.292)                  
## BA.PersonalControlV                                       -0.415 ***               
##                                                           (0.085)                  
## W.X:BA.PersonalControlV                                    0.117                   
##                                                           (0.068)                  
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.005                        0.083                   
## Conditional R^2               0.536                        0.538                   
## AIC                        2336.662                     2324.944                   
## BIC                        2363.652                     2360.930                   
## Num. obs.                   664                          664                       
## Num. groups: B.ID           166                          166                       
## Var: B.ID (Intercept)         1.604                        1.338                   
## Var: B.ID W.X                 0.019                        0.008                   
## Cov: B.ID (Intercept) W.X    -0.175                       -0.105                   
## Var: Residual                 1.256                        1.254                   
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  2.95   1 482  .087 .  
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.375 (0.123) -3.039  .003 **  [-0.617, -0.133]
##  4.072 (Mean)          -0.225 (0.087) -2.581  .010 *   [-0.396, -0.054]
##  5.350 (+ SD)          -0.075 (0.123) -0.610  .542     [-0.317,  0.167]
## ───────────────────────────────────────────────────────────────────────
S1.WP.SocialLearningVBA.PositiveReflectionOnAIUseV=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.PositiveReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.PositiveReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                    (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                           3.759 ***               1.925 ***          
##                                      (0.104)                 (0.281)             
## W.X                                  -0.178 *                 0.248              
##                                      (0.079)                 (0.241)             
## BA.PositiveReflectionOnAIUseV                                 0.451 ***          
##                                                              (0.065)             
## W.X:BA.PositiveReflectionOnAIUseV                            -0.105              
##                                                              (0.056)             
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                          0.004                   0.147              
## Conditional R^2                       0.535                   0.538              
## AIC                                2211.535                2179.824              
## BIC                                2238.525                2215.810              
## Num. obs.                           664                     664                  
## Num. groups: B.ID                   166                     166                  
## Var: B.ID (Intercept)                 1.282                   0.890              
## Var: B.ID W.X                         0.007                   0.000              
## Cov: B.ID (Intercept) W.X            -0.097                  -0.014              
## Var: Residual                         1.040                   1.037              
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────
##                                         F df1 df2     p    
## ───────────────────────────────────────────────────────────
## W.X * BA.PositiveReflectionOnAIUseV  3.49   1 496  .062 .  
## ───────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  2.657 (- SD)                    -0.031 (0.112) -0.274  .784     [-0.250,  0.189]
##  4.070 (Mean)                    -0.178 (0.079) -2.258  .024 *   [-0.333, -0.024]
##  5.483 (+ SD)                    -0.326 (0.112) -2.918  .004 **  [-0.545, -0.107]
## ─────────────────────────────────────────────────────────────────────────────────
S1.WP.FamilyMemberUndermingVBA.AIServiceFailureV=PROCESS(data1, y="WP.FamilyMemberUndermingV", x="W.X", mods="BA.AIServiceFailureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberUndermingV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberUndermingV ~ W.X*BA.AIServiceFailureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.FamilyMemberUndermingV  (2) WP.FamilyMemberUndermingV
## ───────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   1.640 ***                      1.126 ***                 
##                              (0.083)                        (0.237)                    
## W.X                           0.090                         -0.198                     
##                              (0.063)                        (0.182)                    
## BA.AIServiceFailureV                                         0.145 *                   
##                                                             (0.063)                    
## W.X:BA.AIServiceFailureV                                     0.081                     
##                                                             (0.048)                    
## ───────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.001                          0.043                     
## Conditional R^2               0.552                          0.556                     
## AIC                        1914.774                       1913.454                     
## BIC                        1941.764                       1949.440                     
## Num. obs.                   664                            664                         
## Num. groups: B.ID           166                            166                         
## Var: B.ID (Intercept)         0.811                          0.783                     
## Var: B.ID W.X                 0.000                          0.001                     
## Cov: B.ID (Intercept) W.X    -0.006                         -0.031                     
## Var: Residual                 0.654                          0.651                     
## ───────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberUndermingV" (Y)
## ──────────────────────────────────────────────────
##                                F df1 df2     p    
## ──────────────────────────────────────────────────
## W.X * BA.AIServiceFailureV  2.85   1 492  .092 .  
## ──────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.FamilyMemberUndermingV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.248 (- SD)           -0.016 (0.089) -0.175  .861     [-0.189, 0.158]
##  3.554 (Mean)            0.090 (0.063)  1.441  .150     [-0.033, 0.213]
##  4.861 (+ SD)            0.196 (0.089)  2.213  .027 *   [ 0.022, 0.370]
## ───────────────────────────────────────────────────────────────────────
S1.WP.FamilyMemberConflictVBA.AIServiceFailureV=PROCESS(data1, y="WP.FamilyMemberConflictV", x="W.X", mods="BA.AIServiceFailureV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberConflictV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberConflictV ~ W.X*BA.AIServiceFailureV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.FamilyMemberConflictV  (2) WP.FamilyMemberConflictV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   1.532 ***                     1.058 ***                
##                              (0.079)                       (0.227)                   
## W.X                           0.038                        -0.281                    
##                              (0.060)                       (0.175)                   
## BA.AIServiceFailureV                                        0.134 *                  
##                                                            (0.060)                   
## W.X:BA.AIServiceFailureV                                    0.090                    
##                                                            (0.046)                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                         0.043                    
## Conditional R^2               0.546                         0.551                    
## AIC                        1861.503                      1859.000                    
## BIC                        1888.492                      1894.986                    
## Num. obs.                   664                           664                        
## Num. groups: B.ID           166                           166                        
## Var: B.ID (Intercept)         0.739                         0.718                    
## Var: B.ID W.X                 0.000                         0.002                    
## Cov: B.ID (Intercept) W.X    -0.010                        -0.038                    
## Var: Residual                 0.607                         0.602                    
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberConflictV" (Y)
## ──────────────────────────────────────────────────
##                                F df1 df2     p    
## ──────────────────────────────────────────────────
## W.X * BA.AIServiceFailureV  3.79   1 488  .052 .  
## ──────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.FamilyMemberConflictV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.248 (- SD)           -0.079 (0.085) -0.927  .354     [-0.247, 0.088]
##  3.554 (Mean)            0.038 (0.060)  0.636  .525     [-0.080, 0.157]
##  4.861 (+ SD)            0.156 (0.085)  1.827  .068 .   [-0.011, 0.323]
## ───────────────────────────────────────────────────────────────────────
S1.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV=PROCESS(data1, y="WP.FeedbackSeekingForSystemImprovementV", x="W.X", mods="BA.AnthropomorphismV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FeedbackSeekingForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AnthropomorphismV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FeedbackSeekingForSystemImprovementV ~ W.X*BA.AnthropomorphismV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.FeedbackSeekingForSystemImprovementV  (2) WP.FeedbackSeekingForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.185 ***                                    2.257 ***                               
##                              (0.114)                                      (0.240)                                  
## W.X                          -0.149                                        0.155                                   
##                              (0.086)                                      (0.189)                                  
## BA.AnthropomorphismV                                                       0.326 ***                               
##                                                                           (0.075)                                  
## W.X:BA.AnthropomorphismV                                                  -0.107                                   
##                                                                           (0.059)                                  
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                        0.067                                   
## Conditional R^2               0.528                                        0.529                                   
## AIC                        2288.555                                     2281.765                                   
## BIC                        2315.545                                     2317.751                                   
## Num. obs.                   664                                          664                                       
## Num. groups: B.ID           166                                          166                                       
## Var: B.ID (Intercept)         1.571                                        1.361                                   
## Var: B.ID W.X                 0.054                                        0.037                                   
## Cov: B.ID (Intercept) W.X    -0.292                                       -0.225                                   
## Var: Residual                 1.175                                        1.175                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────
##                                F df1 df2     p    
## ──────────────────────────────────────────────────
## W.X * BA.AnthropomorphismV  3.25   1 433  .072 .  
## ──────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.AnthropomorphismV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  1.403 (- SD)            0.005 (0.121)  0.042  .966     [-0.232,  0.242]
##  2.847 (Mean)           -0.149 (0.085) -1.745  .082 .   [-0.317,  0.018]
##  4.291 (+ SD)           -0.303 (0.121) -2.509  .012 *   [-0.540, -0.066]
## ────────────────────────────────────────────────────────────────────────

4.2 Plot

interact_plot(S1.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV$model.y, W.X, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV$model.y, W.X, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV$model.y, W.X, BA.ClarityOfInformationV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.VoiceForSystemImprovmentVBA.StructureV$model.y, W.X, BA.StructureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV$model.y, W.X, BA.NegativeReflectionOnAIUseV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.LearningFromErrorsVBB.AIUsageV$model.y, W.X, BB.AIUsageV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.LearningFromErrorsVBA.AIInteractionQualityV$model.y, W.X, BA.AIInteractionQualityV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV$model.y, W.X, BA.ClarityOfInformationV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.LearningBehaviorVBB.AITechnologyAnxietyV$model.y, W.X, BB.AITechnologyAnxietyV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.PerceivedWorkGrowthVBB.TrustInAIV$model.y, W.X, BB.TrustInAIV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV$model.y, W.X, BA.StructureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV$model.y, W.X, BA.ClarityOfInformationV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WA.ErrorStrainVBA.EffectivenessV$model.y, W.X, BA.EffectivenessV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.VoiceForSystemImprovmentVBA.QualityV$model.y, W.X, BA.QualityV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.SocialLearningVBA.ProblemSolvingConfidenceV$model.y, W.X, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV$model.y, W.X, BA.PersonalControlV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.AIEnabledCreativityVBA.PersonalControlV$model.y, W.X, BA.PersonalControlV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.SocialLearningVBA.PositiveReflectionOnAIUseV$model.y, W.X, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.FamilyMemberUndermingVBA.AIServiceFailureV$model.y, W.X, BA.AIServiceFailureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.FamilyMemberConflictVBA.AIServiceFailureV$model.y, W.X, BA.AIServiceFailureV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S1.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV$model.y, W.X, BA.AnthropomorphismV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

5 STUDY 2 USING .05 AS STANDARD

5.1 Analysis

Sb10.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X01                                     0.212                                         0.699 **                                 
##                                          (0.239)                                       (0.260)                                   
## W.X01BA.AIOnlineCommunicationSkillsV     -0.040                                        -0.155 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X10                                     0.038                                         0.692 **                                 
##                                          (0.070)                                       (0.259)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X10:BA.AIOnlineCommunicationSkillsV                                                  -0.154 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.000                                         0.077                                    
## Conditional R^2                           0.685                                         0.687                                    
## AIC                                    2960.196                                      2944.105                                    
## BIC                                    3013.937                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.552                                         1.294                                    
## Var: B.ID W.X10                           0.087                                         0.084                                    
## Var: B.ID W.X01                           0.087                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.040                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.066                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.083                                        -0.087                                    
## Var: Residual                             0.710                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  6.84   1 340  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.220 (0.095)  2.308  .021 *   [ 0.033, 0.406]
##  4.260 (Mean)                       0.038 (0.067)  0.565  .572     [-0.094, 0.170]
##  5.444 (+ SD)                      -0.144 (0.095) -1.510  .132     [-0.330, 0.043]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.StructureV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.StructureV",covs=c("W.X01","W.X01BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X01, W.X01BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.StructureV + W.X10*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.413 ***                                     1.591 ***                                
##                                (0.108)                                       (0.335)                                   
## W.X01                           0.199                                         0.662 **                                 
##                                (0.216)                                       (0.235)                                   
## W.X01BA.StructureV             -0.039                                        -0.151 **                                 
##                                (0.050)                                       (0.055)                                   
## W.X10                           0.038                                         0.659 **                                 
##                                (0.070)                                       (0.234)                                   
## BA.StructureV                                                                 0.443 ***                                
##                                                                              (0.078)                                   
## W.X10:BA.StructureV                                                          -0.151 **                                 
##                                                                              (0.054)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                         0.089                                    
## Conditional R^2                 0.685                                         0.688                                    
## AIC                          2960.326                                      2940.396                                    
## BIC                          3014.067                                      3003.907                                    
## Num. obs.                     978                                           978                                        
## Num. groups: B.ID             163                                           163                                        
## Var: B.ID (Intercept)           1.552                                         1.256                                    
## Var: B.ID W.X10                 0.087                                         0.085                                    
## Var: B.ID W.X01                 0.087                                         0.090                                    
## Cov: B.ID (Intercept) W.X10    -0.040                                         0.048                                    
## Cov: B.ID (Intercept) W.X01    -0.064                                        -0.002                                    
## Cov: B.ID W.X10 W.X01          -0.083                                        -0.087                                    
## Var: Residual                   0.709                                         0.701                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X10 * BA.StructureV  7.69   1 340  .006 ** 
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.231 (0.098)  2.348  .019 *   [ 0.038, 0.423]
##  4.117 (Mean)     0.038 (0.069)  0.548  .584     [-0.098, 0.174]
##  5.394 (+ SD)    -0.155 (0.098) -1.574  .117     [-0.347, 0.038]
## ────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.WayOfQuestioningV",covs=c("W.X01","W.X01BA.WayOfQuestioningV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : W.X01, W.X01BA.WayOfQuestioningV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.WayOfQuestioningV + W.X10*BA.WayOfQuestioningV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.413 ***                                     1.840 ***                                
##                                (0.108)                                       (0.369)                                   
## W.X01                           0.209                                         0.610 *                                  
##                                (0.230)                                       (0.251)                                   
## W.X01BA.WayOfQuestioningV      -0.039                                        -0.132 *                                  
##                                (0.051)                                       (0.056)                                   
## W.X10                           0.038                                         0.562 *                                  
##                                (0.070)                                       (0.251)                                   
## BA.WayOfQuestioningV                                                          0.365 ***                                
##                                                                              (0.082)                                   
## W.X10:BA.WayOfQuestioningV                                                   -0.122 *                                  
##                                                                              (0.056)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                         0.057                                    
## Conditional R^2                 0.684                                         0.686                                    
## AIC                          2960.255                                      2951.915                                    
## BIC                          3013.996                                      3015.427                                    
## Num. obs.                     978                                           978                                        
## Num. groups: B.ID             163                                           163                                        
## Var: B.ID (Intercept)           1.551                                         1.362                                    
## Var: B.ID W.X10                 0.086                                         0.084                                    
## Var: B.ID W.X01                 0.087                                         0.088                                    
## Cov: B.ID (Intercept) W.X10    -0.039                                         0.017                                    
## Cov: B.ID (Intercept) W.X01    -0.069                                        -0.028                                    
## Cov: B.ID W.X10 W.X01          -0.083                                        -0.086                                    
## Var: Residual                   0.710                                         0.705                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X10 * BA.WayOfQuestioningV  4.74   1 336  .030 *  
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  3.061 (- SD)            0.190 (0.095)  1.989  .047 *   [ 0.003, 0.377]
##  4.307 (Mean)            0.038 (0.067)  0.564  .573     [-0.094, 0.170]
##  5.552 (+ SD)           -0.114 (0.095) -1.191  .234     [-0.300, 0.073]
## ───────────────────────────────────────────────────────────────────────
Sb10.WA.AffectiveRuminationVBA.ClarityOfInformationV=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X10", mods="BA.ClarityOfInformationV",covs=c("W.X01","W.X01BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X01, W.X01BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X01 + W.X01BA.ClarityOfInformationV + W.X10*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.731 ***                    3.029 ***               
##                                   (0.114)                      (0.408)                  
## W.X01                              0.247                        0.525 *                 
##                                   (0.232)                      (0.259)                  
## W.X01BA.ClarityOfInformationV     -0.044                       -0.108                   
##                                   (0.051)                      (0.057)                  
## W.X10                              0.093                        0.631 *                 
##                                   (0.072)                      (0.256)                  
## BA.ClarityOfInformationV                                        0.161                   
##                                                                (0.090)                  
## W.X10:BA.ClarityOfInformationV                                 -0.123 *                 
##                                                                (0.057)                  
## ────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                        0.007                   
## Conditional R^2                    0.681                        0.683                   
## AIC                             3044.486                     3049.476                   
## BIC                             3098.226                     3112.987                   
## Num. obs.                        978                          978                       
## Num. groups: B.ID                163                          163                       
## Var: B.ID (Intercept)              1.714                        1.691                   
## Var: B.ID W.X10                    0.030                        0.027                   
## Var: B.ID W.X01                    0.042                        0.045                   
## Cov: B.ID (Intercept) W.X10       -0.054                       -0.033                   
## Cov: B.ID (Intercept) W.X01        0.012                        0.020                   
## Cov: B.ID W.X10 W.X01             -0.035                       -0.035                   
## Var: Residual                      0.803                        0.799                   
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.ClarityOfInformationV  4.77   1 454  .029 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.249 (0.101)  2.471  .014 *   [ 0.051, 0.446]
##  4.356 (Mean)                0.093 (0.071)  1.310  .191     [-0.046, 0.233]
##  5.617 (+ SD)               -0.062 (0.101) -0.620  .536     [-0.260, 0.135]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.617 ***                                  1.877 ***                             
##                                   (0.111)                                    (0.315)                                
## W.X01                              0.062                                      0.076                                 
##                                   (0.229)                                    (0.260)                                
## W.X01BA.AIInteractionQualityV      0.001                                     -0.002                                 
##                                   (0.053)                                    (0.061)                                
## W.X10                              0.058                                     -0.500 *                               
##                                   (0.082)                                    (0.250)                                
## BA.AIInteractionQualityV                                                      0.434 ***                             
##                                                                              (0.074)                                
## W.X10:BA.AIInteractionQualityV                                                0.139 *                               
##                                                                              (0.059)                                
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                                      0.162                                 
## Conditional R^2                    0.608                                      0.608                                 
## AIC                             3264.496                                   3223.892                                 
## BIC                             3318.236                                   3287.404                                 
## Num. obs.                        978                                        978                                     
## Num. groups: B.ID                163                                        163                                     
## Var: B.ID (Intercept)              1.489                                      1.153                                 
## Var: B.ID W.X10                    0.038                                      0.000                                 
## Var: B.ID W.X01                    0.057                                      0.085                                 
## Cov: B.ID (Intercept) W.X10        0.100                                     -0.024                                 
## Cov: B.ID (Intercept) W.X01        0.084                                      0.066                                 
## Cov: B.ID W.X10 W.X01             -0.035                                     -0.001                                 
## Var: Residual                      1.060                                      1.062                                 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  5.56   1 647  .019 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.132 (0.115) -1.152  .250     [-0.357, 0.093]
##  4.006 (Mean)                0.058 (0.081)  0.719  .473     [-0.101, 0.217]
##  5.372 (+ SD)                0.249 (0.115)  2.169  .031 *   [ 0.024, 0.474]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV=PROCESS(data2, y="WA.SelfReflectionForManipulationCheckV", x="W.X10", mods="BA.ProblemSolvingConfidenceV",covs=c("W.X01","W.X01BA.ProblemSolvingConfidenceV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.SelfReflectionForManipulationCheckV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : W.X01, W.X01BA.ProblemSolvingConfidenceV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.SelfReflectionForManipulationCheckV ~ W.X01 + W.X01BA.ProblemSolvingConfidenceV + W.X10*BA.ProblemSolvingConfidenceV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                     (1) WA.SelfReflectionForManipulationCheckV  (2) WA.SelfReflectionForManipulationCheckV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                            4.104 ***                                   0.534                                  
##                                       (0.110)                                     (0.425)                                 
## W.X01                                 -0.681 **                                    0.322                                  
##                                       (0.263)                                     (0.311)                                 
## W.X01BA.ProblemSolvingConfidenceV      0.157 **                                   -0.072                                  
##                                       (0.058)                                     (0.069)                                 
## W.X10                                  0.039                                       0.600 *                                
##                                       (0.063)                                     (0.291)                                 
## BA.ProblemSolvingConfidenceV                                                       0.816 ***                              
##                                                                                   (0.095)                                 
## W.X10:BA.ProblemSolvingConfidenceV                                                -0.128 *                                
##                                                                                   (0.065)                                 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                           0.004                                       0.245                                  
## Conditional R^2                        0.692                                       0.702                                  
## AIC                                 2838.299                                    2786.485                                  
## BIC                                 2892.040                                    2849.997                                  
## Num. obs.                            978                                         978                                      
## Num. groups: B.ID                    163                                         163                                      
## Var: B.ID (Intercept)                  1.659                                       1.047                                  
## Var: B.ID W.X10                        0.008                                       0.001                                  
## Var: B.ID W.X01                        0.131                                       0.091                                  
## Cov: B.ID (Intercept) W.X10           -0.114                                      -0.023                                  
## Cov: B.ID (Intercept) W.X01           -0.282                                      -0.115                                  
## Cov: B.ID W.X10 W.X01                  0.019                                       0.003                                  
## Var: Residual                          0.644                                       0.643                                  
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.SelfReflectionForManipulationCheckV" (Y)
## ────────────────────────────────────────────────────────────
##                                          F df1 df2     p    
## ────────────────────────────────────────────────────────────
## W.X10 * BA.ProblemSolvingConfidenceV  3.89   1 646  .049 *  
## ────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.SelfReflectionForManipulationCheckV" (Y)
## ───────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────
##  3.409 (- SD)                    0.163 (0.089)  1.834  .067 .   [-0.011, 0.337]
##  4.376 (Mean)                    0.039 (0.063)  0.622  .534     [-0.084, 0.162]
##  5.343 (+ SD)                   -0.085 (0.089) -0.955  .340     [-0.259, 0.089]
## ───────────────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X10", mods="BA.WayOfQuestioningV",covs=c("W.X01","W.X01BA.WayOfQuestioningV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : W.X01, W.X01BA.WayOfQuestioningV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X01 + W.X01BA.WayOfQuestioningV + W.X10*BA.WayOfQuestioningV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.474 ***                            2.112 ***                       
##                                (0.115)                              (0.399)                          
## W.X01                           0.362                                0.449                           
##                                (0.213)                              (0.245)                          
## W.X01BA.WayOfQuestioningV      -0.096 *                             -0.116 *                         
##                                (0.047)                              (0.055)                          
## W.X10                           0.099                                0.060                           
##                                (0.068)                              (0.245)                          
## BA.WayOfQuestioningV                                                 0.316 ***                       
##                                                                     (0.089)                          
## W.X10:BA.WayOfQuestioningV                                           0.009                           
##                                                                     (0.055)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                0.051                           
## Conditional R^2                 0.706                                0.704                           
## AIC                          2976.768                             2974.051                           
## BIC                          3030.508                             3037.562                           
## Num. obs.                     978                                  978                               
## Num. groups: B.ID             163                                  163                               
## Var: B.ID (Intercept)           1.766                                1.621                           
## Var: B.ID W.X10                 0.000                                0.000                           
## Var: B.ID W.X01                 0.001                                0.002                           
## Cov: B.ID (Intercept) W.X10     0.015                                0.011                           
## Cov: B.ID (Intercept) W.X01     0.044                                0.053                           
## Cov: B.ID W.X10 W.X01           0.000                                0.000                           
## Var: Residual                   0.754                                0.754                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X10 * BA.WayOfQuestioningV  0.03   1 810  .870    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  3.061 (- SD)            0.088 (0.096) 0.911  .363     [-0.101, 0.276]
##  4.307 (Mean)            0.099 (0.068) 1.452  .147     [-0.035, 0.232]
##  5.552 (+ SD)            0.110 (0.096) 1.142  .254     [-0.079, 0.299]
## ──────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X10", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X01","W.X01BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X01, W.X01BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X01 + W.X01BA.NeedForPersonalizationDueToAIV + W.X10*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.721 ***                    1.974 ***               
##                                            (0.119)                      (0.338)                  
## W.X01                                       0.098                        0.349                   
##                                            (0.188)                      (0.212)                  
## W.X01BA.NeedForPersonalizationDueToAIV     -0.040                       -0.102 *                 
##                                            (0.043)                      (0.049)                  
## W.X10                                       0.006                        0.203                   
##                                            (0.068)                      (0.210)                  
## BA.NeedForPersonalizationDueToAIV                                        0.429 ***               
##                                                                         (0.079)                  
## W.X10:BA.NeedForPersonalizationDueToAIV                                 -0.048                   
##                                                                         (0.049)                  
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.001                        0.110                   
## Conditional R^2                             0.712                        0.707                   
## AIC                                      2988.311                     2971.736                   
## BIC                                      3042.052                     3035.247                   
## Num. obs.                                 978                          978                       
## Num. groups: B.ID                         163                          163                       
## Var: B.ID (Intercept)                       1.938                        1.587                   
## Var: B.ID W.X10                             0.015                        0.003                   
## Var: B.ID W.X01                             0.028                        0.018                   
## Cov: B.ID (Intercept) W.X10                -0.107                       -0.070                   
## Cov: B.ID (Intercept) W.X01                -0.048                       -0.002                   
## Cov: B.ID W.X10 W.X01                      -0.013                        0.000                   
## Var: Residual                               0.749                        0.758                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X10 * BA.NeedForPersonalizationDueToAIV  0.98   1 421  .322    
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.074 (0.097)  0.764  .445     [-0.116, 0.263]
##  4.071 (Mean)                         0.006 (0.068)  0.090  .929     [-0.128, 0.140]
##  5.470 (+ SD)                        -0.062 (0.097) -0.637  .524     [-0.251, 0.128]
## ────────────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X10", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X01","W.X01BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X01, W.X01BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X01 + W.X01BA.NeedForPersonalizationDueToAIV + W.X10*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.531 ***                         1.851 ***                    
##                                            (0.121)                           (0.347)                       
## W.X01                                       0.062                             0.557 *                      
##                                            (0.213)                           (0.246)                       
## W.X01BA.NeedForPersonalizationDueToAIV     -0.014                            -0.136 *                      
##                                            (0.048)                           (0.057)                       
## W.X10                                       0.058                             0.353                        
##                                            (0.062)                           (0.189)                       
## BA.NeedForPersonalizationDueToAIV                                             0.413 ***                    
##                                                                              (0.081)                       
## W.X10:BA.NeedForPersonalizationDueToAIV                                      -0.072                        
##                                                                              (0.044)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.000                             0.093                        
## Conditional R^2                             0.762                             0.763                        
## AIC                                      2903.274                          2890.559                        
## BIC                                      2957.015                          2954.071                        
## Num. obs.                                 978                               978                            
## Num. groups: B.ID                         163                               163                            
## Var: B.ID (Intercept)                       2.096                             1.775                        
## Var: B.ID W.X10                             0.011                             0.008                        
## Var: B.ID W.X01                             0.464                             0.439                        
## Cov: B.ID (Intercept) W.X10                -0.075                            -0.021                        
## Cov: B.ID (Intercept) W.X01                -0.383                            -0.290                        
## Cov: B.ID W.X10 W.X01                       0.071                             0.059                        
## Var: Residual                               0.608                             0.607                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X10 * BA.NeedForPersonalizationDueToAIV  2.72   1 585  .099 .  
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.160 (0.087)  1.838  .067 .   [-0.011, 0.330]
##  4.071 (Mean)                         0.058 (0.061)  0.949  .343     [-0.062, 0.179]
##  5.470 (+ SD)                        -0.043 (0.087) -0.497  .620     [-0.213, 0.127]
## ────────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.170 **                                      
##                                (0.122)                                            (0.369)                                        
## W.X01                          -0.001                                              0.640 *                                       
##                                (0.214)                                            (0.250)                                        
## W.X01BA.ReflectionOnAIUseV      0.010                                             -0.149 *                                       
##                                (0.050)                                            (0.059)                                        
## W.X10                           0.103                                              0.479 *                                       
##                                (0.065)                                            (0.219)                                        
## BA.ReflectionOnAIUseV                                                              0.590 ***                                     
##                                                                                   (0.087)                                        
## W.X10:BA.ReflectionOnAIUseV                                                       -0.093                                         
##                                                                                   (0.052)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.155                                         
## Conditional R^2                 0.740                                              0.742                                         
## AIC                          2946.196                                           2917.085                                         
## BIC                          2999.937                                           2980.596                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.106                                              1.583                                         
## Var: B.ID W.X10                 0.005                                              0.003                                         
## Var: B.ID W.X01                 0.240                                              0.208                                         
## Cov: B.ID (Intercept) W.X10    -0.062                                              0.015                                         
## Cov: B.ID (Intercept) W.X01    -0.327                                             -0.190                                         
## Cov: B.ID W.X10 W.X01           0.036                                              0.022                                         
## Var: Residual                   0.678                                              0.677                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  3.20   1 625  .074 .  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.219 (0.091)  2.397  .017 *   [ 0.040, 0.398]
##  4.030 (Mean)             0.103 (0.065)  1.599  .110     [-0.023, 0.230]
##  5.272 (+ SD)            -0.012 (0.091) -0.136  .892     [-0.191, 0.167]
## ────────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.CapabilityV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.721 ***                    1.510 ***               
##                                (0.119)                      (0.331)                  
## W.X01                           0.134                        0.339                   
##                                (0.193)                      (0.218)                  
## W.X01BA.CapabilityV            -0.048                       -0.097 *                 
##                                (0.043)                      (0.049)                  
## W.X10                           0.006                        0.029                   
##                                (0.068)                      (0.217)                  
## BA.CapabilityV                                               0.527 ***               
##                                                             (0.075)                  
## W.X10:BA.CapabilityV                                        -0.005                   
##                                                             (0.049)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                        0.185                   
## Conditional R^2                 0.713                        0.710                   
## AIC                          2988.148                     2949.446                   
## BIC                          3041.888                     3012.958                   
## Num. obs.                     978                          978                       
## Num. groups: B.ID             163                          163                       
## Var: B.ID (Intercept)           1.937                        1.402                   
## Var: B.ID W.X10                 0.013                        0.013                   
## Var: B.ID W.X01                 0.025                        0.020                   
## Cov: B.ID (Intercept) W.X10    -0.106                       -0.101                   
## Cov: B.ID (Intercept) W.X01    -0.031                        0.018                   
## Cov: B.ID W.X10 W.X01          -0.012                       -0.012                   
## Var: Residual                   0.750                        0.751                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  0.01   1 593  .911    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.014 (0.097)  0.142  .887     [-0.176, 0.204]
##  4.196 (Mean)      0.006 (0.068)  0.090  .929     [-0.128, 0.140]
##  5.593 (+ SD)     -0.002 (0.097) -0.016  .988     [-0.191, 0.188]
## ─────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.StructureV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X10", mods="BA.StructureV",covs=c("W.X01","W.X01BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X01, W.X01BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X01 + W.X01BA.StructureV + W.X10*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.474 ***                            1.953 ***                       
##                                (0.115)                              (0.367)                          
## W.X01                           0.254                                0.413                           
##                                (0.200)                              (0.230)                          
## W.X01BA.StructureV             -0.074                               -0.113 *                         
##                                (0.046)                              (0.053)                          
## W.X10                           0.099                                0.185                           
##                                (0.068)                              (0.230)                          
## BA.StructureV                                                        0.369 ***                       
##                                                                     (0.085)                          
## W.X10:BA.StructureV                                                 -0.021                           
##                                                                     (0.053)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                0.071                           
## Conditional R^2                 0.706                                0.704                           
## AIC                          2978.328                             2970.918                           
## BIC                          3032.069                             3034.429                           
## Num. obs.                     978                                  978                               
## Num. groups: B.ID             163                                  163                               
## Var: B.ID (Intercept)           1.766                                1.554                           
## Var: B.ID W.X10                 0.000                                0.000                           
## Var: B.ID W.X01                 0.001                                0.002                           
## Cov: B.ID (Intercept) W.X10     0.014                                0.025                           
## Cov: B.ID (Intercept) W.X01     0.042                                0.062                           
## Cov: B.ID W.X10 W.X01           0.000                                0.001                           
## Var: Residual                   0.755                                0.756                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X10 * BA.StructureV  0.15   1 807  .694    
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.126 (0.096) 1.304  .193     [-0.063, 0.314]
##  4.117 (Mean)     0.099 (0.068) 1.450  .147     [-0.035, 0.232]
##  5.394 (+ SD)     0.072 (0.096) 0.747  .455     [-0.117, 0.261]
## ───────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.474 ***                            1.804 ***                       
##                                          (0.115)                              (0.407)                          
## W.X01                                     0.368                                0.519 *                         
##                                          (0.221)                              (0.255)                          
## W.X01BA.AIOnlineCommunicationSkillsV     -0.098 *                             -0.134 *                         
##                                          (0.049)                              (0.058)                          
## W.X10                                     0.099                                0.158                           
##                                          (0.068)                              (0.254)                          
## BA.AIOnlineCommunicationSkillsV                                                0.392 ***                       
##                                                                               (0.092)                          
## W.X10:BA.AIOnlineCommunicationSkillsV                                         -0.014                           
##                                                                               (0.057)                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.003                                0.068                           
## Conditional R^2                           0.707                                0.704                           
## AIC                                    2976.955                             2969.570                           
## BIC                                    3030.696                             3033.081                           
## Num. obs.                               978                                  978                               
## Num. groups: B.ID                       163                                  163                               
## Var: B.ID (Intercept)                     1.767                                1.562                           
## Var: B.ID W.X10                           0.000                                0.000                           
## Var: B.ID W.X01                           0.001                                0.003                           
## Cov: B.ID (Intercept) W.X10               0.014                                0.021                           
## Cov: B.ID (Intercept) W.X01               0.049                                0.066                           
## Cov: B.ID W.X10 W.X01                     0.000                                0.001                           
## Var: Residual                             0.754                                0.754                           
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  0.06   1 808  .809    
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.115 (0.096) 1.198  .231     [-0.073, 0.304]
##  4.260 (Mean)                       0.099 (0.068) 1.452  .147     [-0.035, 0.232]
##  5.444 (+ SD)                       0.082 (0.096) 0.855  .393     [-0.106, 0.271]
## ─────────────────────────────────────────────────────────────────────────────────

5.2 Plot

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.StructureV$model.y, W.X10, BA.StructureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV$model.y, W.X10, BA.WayOfQuestioningV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.WayOfQuestioningV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.AffectiveRuminationVBA.ClarityOfInformationV$model.y, W.X10, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV$model.y, W.X10, BA.AIInteractionQualityV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIInteractionQualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV$model.y, W.X10, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ProblemSolvingConfidenceV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV$model.y, W.X10, BA.WayOfQuestioningV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.WayOfQuestioningV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV$model.y, W.X10, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV$model.y, W.X10, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV$model.y, W.X10, BA.ReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.CapabilityV$model.y, W.X10, BA.CapabilityV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.CapabilityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.StructureV$model.y, W.X10, BA.StructureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

6 STUDY 2 USING .10 AS STANDARD

6.1 Analysis

Sb10.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X10", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X01","W.X01BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X01, W.X01BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X01 + W.X01BA.NeedForPersonalizationDueToAIV + W.X10*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.474 ***                            1.908 ***                       
##                                            (0.115)                              (0.329)                          
## W.X01                                       0.213                                0.406                           
##                                            (0.183)                              (0.210)                          
## W.X01BA.NeedForPersonalizationDueToAIV     -0.065                               -0.112 *                         
##                                            (0.042)                              (0.049)                          
## W.X10                                       0.099                                0.256                           
##                                            (0.068)                              (0.210)                          
## BA.NeedForPersonalizationDueToAIV                                                0.385 ***                       
##                                                                                 (0.076)                          
## W.X10:BA.NeedForPersonalizationDueToAIV                                         -0.039                           
##                                                                                 (0.049)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.003                                0.089                           
## Conditional R^2                             0.706                                0.704                           
## AIC                                      2978.767                             2966.314                           
## BIC                                      3032.507                             3029.826                           
## Num. obs.                                 978                                  978                               
## Num. groups: B.ID                         163                                  163                               
## Var: B.ID (Intercept)                       1.767                                1.489                           
## Var: B.ID W.X10                             0.000                                0.001                           
## Var: B.ID W.X01                             0.001                                0.004                           
## Cov: B.ID (Intercept) W.X10                 0.013                                0.039                           
## Cov: B.ID (Intercept) W.X01                 0.044                                0.075                           
## Cov: B.ID W.X10 W.X01                       0.000                                0.002                           
## Var: Residual                               0.756                                0.755                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X10 * BA.NeedForPersonalizationDueToAIV  0.63   1 802  .429    
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.153 (0.096) 1.585  .113     [-0.036, 0.341]
##  4.071 (Mean)                         0.099 (0.068) 1.450  .147     [-0.035, 0.232]
##  5.470 (+ SD)                         0.045 (0.096) 0.466  .641     [-0.144, 0.234]
## ───────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.PositiveReflectionOnAIUseV",covs=c("W.X01","W.X01BA.PositiveReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.PositiveReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.PositiveReflectionOnAIUseV + W.X10*BA.PositiveReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.546 ***                                          1.300 ***                                     
##                                        (0.122)                                            (0.323)                                        
## W.X01                                   0.039                                              0.587 **                                      
##                                        (0.192)                                            (0.223)                                        
## W.X01BA.PositiveReflectionOnAIUseV      0.000                                             -0.135 **                                      
##                                        (0.044)                                            (0.052)                                        
## W.X10                                   0.103                                              0.360                                         
##                                        (0.065)                                            (0.196)                                        
## BA.PositiveReflectionOnAIUseV                                                              0.556 ***                                     
##                                                                                           (0.076)                                        
## W.X10:BA.PositiveReflectionOnAIUseV                                                       -0.064                                         
##                                                                                           (0.046)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.001                                              0.185                                         
## Conditional R^2                         0.740                                              0.741                                         
## AIC                                  2946.889                                           2910.612                                         
## BIC                                  3000.630                                           2974.123                                         
## Num. obs.                             978                                                978                                             
## Num. groups: B.ID                     163                                                163                                             
## Var: B.ID (Intercept)                   2.101                                              1.503                                         
## Var: B.ID W.X10                         0.002                                              0.003                                         
## Var: B.ID W.X01                         0.206                                              0.203                                         
## Cov: B.ID (Intercept) W.X10            -0.057                                              0.003                                         
## Cov: B.ID (Intercept) W.X01            -0.302                                             -0.173                                         
## Cov: B.ID W.X10 W.X01                   0.008                                              0.023                                         
## Var: Residual                           0.680                                              0.678                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X10 * BA.PositiveReflectionOnAIUseV  1.91   1 625  .167    
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────
##  2.629 (- SD)                     0.193 (0.091) 2.108  .035 *   [ 0.014, 0.372]
##  4.037 (Mean)                     0.103 (0.065) 1.598  .111     [-0.023, 0.230]
##  5.444 (+ SD)                     0.014 (0.091) 0.151  .880     [-0.165, 0.193]
## ───────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.531 ***                         1.718 ***                    
##                                          (0.121)                           (0.430)                       
## W.X01                                     0.089                             0.699 *                      
##                                          (0.257)                           (0.299)                       
## W.X01BA.AIOnlineCommunicationSkillsV     -0.020                            -0.163 *                      
##                                          (0.057)                           (0.068)                       
## W.X10                                     0.058                             0.537 *                      
##                                          (0.062)                           (0.229)                       
## BA.AIOnlineCommunicationSkillsV                                             0.425 ***                    
##                                                                            (0.097)                       
## W.X10:BA.AIOnlineCommunicationSkillsV                                      -0.112 *                      
##                                                                            (0.052)                       
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.000                             0.064                        
## Conditional R^2                           0.762                             0.764                        
## AIC                                    2902.907                          2894.791                        
## BIC                                    2956.647                          2958.302                        
## Num. obs.                               978                               978                            
## Num. groups: B.ID                       163                               163                            
## Var: B.ID (Intercept)                     2.095                             1.858                        
## Var: B.ID W.X10                           0.011                             0.008                        
## Var: B.ID W.X01                           0.463                             0.441                        
## Cov: B.ID (Intercept) W.X10              -0.075                            -0.016                        
## Cov: B.ID (Intercept) W.X01              -0.383                            -0.305                        
## Cov: B.ID W.X10 W.X01                     0.070                             0.057                        
## Var: Residual                             0.608                             0.605                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  4.70   1 590  .031 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.191 (0.087)  2.205  .028 *   [ 0.021, 0.361]
##  4.260 (Mean)                       0.058 (0.061)  0.951  .342     [-0.062, 0.178]
##  5.444 (+ SD)                      -0.075 (0.087) -0.862  .389     [-0.245, 0.095]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.ClarityOfInformationV",covs=c("W.X01","W.X01BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X01, W.X01BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.ClarityOfInformationV + W.X10*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.413 ***                                     1.797 ***                                
##                                   (0.108)                                       (0.368)                                   
## W.X01                              0.159                                         0.586 *                                  
##                                   (0.230)                                       (0.251)                                   
## W.X01BA.ClarityOfInformationV     -0.028                                        -0.125 *                                  
##                                   (0.050)                                       (0.055)                                   
## W.X10                              0.038                                         0.616 *                                  
##                                   (0.070)                                       (0.250)                                   
## BA.ClarityOfInformationV                                                         0.371 ***                                
##                                                                                 (0.081)                                   
## W.X10:BA.ClarityOfInformationV                                                  -0.133 *                                  
##                                                                                 (0.055)                                   
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                                         0.060                                    
## Conditional R^2                    0.684                                         0.686                                    
## AIC                             2960.550                                      2950.710                                    
## BIC                             3014.291                                      3014.222                                    
## Num. obs.                        978                                           978                                        
## Num. groups: B.ID                163                                           163                                        
## Var: B.ID (Intercept)              1.550                                         1.351                                    
## Var: B.ID W.X10                    0.085                                         0.082                                    
## Var: B.ID W.X01                    0.089                                         0.090                                    
## Cov: B.ID (Intercept) W.X10       -0.038                                         0.025                                    
## Cov: B.ID (Intercept) W.X01       -0.073                                        -0.030                                    
## Cov: B.ID W.X10 W.X01             -0.083                                        -0.086                                    
## Var: Residual                      0.710                                         0.705                                    
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.ClarityOfInformationV  5.79   1 340  .017 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.205 (0.095)  2.155  .031 *   [ 0.019, 0.392]
##  4.356 (Mean)                0.038 (0.067)  0.565  .572     [-0.094, 0.170]
##  5.617 (+ SD)               -0.129 (0.095) -1.357  .175     [-0.316, 0.057]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.StructureV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X10", mods="BA.StructureV",covs=c("W.X01","W.X01BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X01, W.X01BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X01 + W.X01BA.StructureV + W.X10*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.531 ***                         1.835 ***                    
##                                (0.121)                           (0.386)                       
## W.X01                          -0.026                             0.474                        
##                                (0.233)                           (0.264)                       
## W.X01BA.StructureV              0.008                            -0.114                        
##                                (0.053)                           (0.061)                       
## W.X10                           0.058                             0.387                        
##                                (0.061)                           (0.206)                       
## BA.StructureV                                                     0.412 ***                    
##                                                                  (0.089)                       
## W.X10:BA.StructureV                                              -0.080                        
##                                                                  (0.048)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                             0.079                        
## Conditional R^2                 0.760                             0.762                        
## AIC                          2904.652                          2895.798                        
## BIC                          2958.393                          2959.310                        
## Num. obs.                     978                               978                            
## Num. groups: B.ID             163                               163                            
## Var: B.ID (Intercept)           2.086                             1.823                        
## Var: B.ID W.X10                 0.002                             0.000                        
## Var: B.ID W.X01                 0.410                             0.391                        
## Cov: B.ID (Intercept) W.X10    -0.064                            -0.015                        
## Cov: B.ID (Intercept) W.X01    -0.364                            -0.289                        
## Cov: B.ID W.X10 W.X01           0.011                             0.002                        
## Var: Residual                   0.611                             0.610                        
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X10 * BA.StructureV  2.78   1 650  .096 .  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.160 (0.087)  1.843  .066 .   [-0.010, 0.331]
##  4.117 (Mean)     0.058 (0.061)  0.948  .343     [-0.062, 0.179]
##  5.394 (+ SD)    -0.044 (0.087) -0.502  .616     [-0.214, 0.127]
## ────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.NegativeReflectionOnAIUseV",covs=c("W.X01","W.X01BA.NegativeReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.NegativeReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.NegativeReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.NegativeReflectionOnAIUseV + W.X10*BA.NegativeReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.546 ***                                          1.960 ***                                     
##                                        (0.122)                                            (0.364)                                        
## W.X01                                  -0.011                                              0.462 *                                       
##                                        (0.199)                                            (0.230)                                        
## W.X01BA.NegativeReflectionOnAIUseV      0.013                                             -0.105                                         
##                                        (0.046)                                            (0.054)                                        
## W.X10                                   0.103                                              0.460 *                                       
##                                        (0.065)                                            (0.203)                                        
## BA.NegativeReflectionOnAIUseV                                                              0.394 ***                                     
##                                                                                           (0.086)                                        
## W.X10:BA.NegativeReflectionOnAIUseV                                                       -0.089                                         
##                                                                                           (0.048)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.001                                              0.077                                         
## Conditional R^2                         0.740                                              0.742                                         
## AIC                                  2946.323                                           2937.838                                         
## BIC                                  3000.064                                           3001.349                                         
## Num. obs.                             978                                                978                                             
## Num. groups: B.ID                     163                                                163                                             
## Var: B.ID (Intercept)                   2.106                                              1.834                                         
## Var: B.ID W.X10                         0.006                                              0.000                                         
## Var: B.ID W.X01                         0.240                                              0.193                                         
## Cov: B.ID (Intercept) W.X10            -0.062                                             -0.001                                         
## Cov: B.ID (Intercept) W.X01            -0.327                                             -0.234                                         
## Cov: B.ID W.X10 W.X01                   0.036                                              0.000                                         
## Var: Residual                           0.678                                              0.678                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X10 * BA.NegativeReflectionOnAIUseV  3.44   1 650  .064 .  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.NegativeReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  2.675 (- SD)                     0.223 (0.091)  2.441  .015 *   [ 0.044, 0.402]
##  4.022 (Mean)                     0.103 (0.065)  1.600  .110     [-0.023, 0.230]
##  5.370 (+ SD)                    -0.016 (0.091) -0.180  .857     [-0.195, 0.163]
## ────────────────────────────────────────────────────────────────────────────────
Sb10.WA.LearningFromErrorsVBB.AIUsageV=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BB.AIUsageV",covs=c("W.X01","W.X01BB.AIUsageV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BB.AIUsageV
## - Covariates (C) : W.X01, W.X01BB.AIUsageV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BB.AIUsageV + W.X10*BB.AIUsageV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.133 ***                   4.099 ***              
##                                (0.120)                     (0.263)                 
## W.X01                           0.205                       0.267                  
##                                (0.140)                     (0.155)                 
## W.X01BB.AIUsageV               -0.057                      -0.076                  
##                                (0.039)                     (0.044)                 
## W.X10                           0.051                       0.191                  
##                                (0.069)                     (0.151)                 
## BB.AIUsageV                                                 0.011                  
##                                                            (0.075)                 
## W.X10:BB.AIUsageV                                          -0.045                  
##                                                            (0.043)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.002                  
## Conditional R^2                 0.720                       0.722                  
## AIC                          2924.114                    2934.877                  
## BIC                          2977.582                    2998.066                  
## Num. obs.                     954                         954                      
## Num. groups: B.ID             159                         159                      
## Var: B.ID (Intercept)           1.910                       1.924                  
## Var: B.ID W.X10                 0.010                       0.009                  
## Var: B.ID W.X01                 0.048                       0.049                  
## Cov: B.ID (Intercept) W.X10    -0.033                      -0.035                  
## Cov: B.ID (Intercept) W.X01     0.013                       0.012                  
## Cov: B.ID W.X10 W.X01          -0.021                      -0.021                  
## Var: Residual                   0.746                       0.746                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X10 * BB.AIUsageV  1.09   1 496  .298    
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────
##  "BB.AIUsageV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────
##  1.513 (- SD)   0.123 (0.097)  1.265  .206     [-0.067, 0.313]
##  3.109 (Mean)   0.051 (0.069)  0.744  .457     [-0.084, 0.186]
##  4.705 (+ SD)  -0.021 (0.097) -0.214  .831     [-0.211, 0.170]
## ──────────────────────────────────────────────────────────────
Sb10.WA.LearningFromErrorsVBA.AIInteractionQualityV=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.163 ***                   3.006 ***              
##                                   (0.118)                     (0.355)                 
## W.X01                             -0.606 **                   -0.425 *                
##                                   (0.188)                     (0.214)                 
## W.X01BA.AIInteractionQualityV      0.157 ***                   0.112 *                
##                                   (0.044)                     (0.051)                 
## W.X10                              0.038                       0.132                  
##                                   (0.068)                     (0.211)                 
## BA.AIInteractionQualityV                                       0.289 ***              
##                                                               (0.084)                 
## W.X10:BA.AIInteractionQualityV                                -0.024                  
##                                                               (0.050)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.006                       0.074                  
## Conditional R^2                    0.712                       0.718                  
## AIC                             2985.004                    2984.423                  
## BIC                             3038.744                    3047.935                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.906                       1.762                  
## Var: B.ID W.X10                    0.009                       0.009                  
## Var: B.ID W.X01                    0.031                       0.028                  
## Cov: B.ID (Intercept) W.X10       -0.055                      -0.043                  
## Cov: B.ID (Intercept) W.X01       -0.081                      -0.059                  
## Cov: B.ID W.X10 W.X01             -0.012                      -0.013                  
## Var: Residual                      0.748                       0.748                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  0.22   1 495  .638    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.070 (0.096) 0.723  .470     [-0.119, 0.259]
##  4.006 (Mean)                0.038 (0.068) 0.551  .582     [-0.096, 0.171]
##  5.372 (+ SD)                0.005 (0.096) 0.056  .955     [-0.184, 0.194]
## ──────────────────────────────────────────────────────────────────────────
Sb10.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.731 ***                    2.810 ***               
##                                          (0.114)                      (0.421)                  
## W.X01                                     0.237                        0.537 *                 
##                                          (0.241)                      (0.269)                  
## W.X01BA.AIOnlineCommunicationSkillsV     -0.043                       -0.113                   
##                                          (0.054)                      (0.061)                  
## W.X10                                     0.093                        0.632 *                 
##                                          (0.071)                      (0.266)                  
## BA.AIOnlineCommunicationSkillsV                                        0.216 *                 
##                                                                       (0.095)                  
## W.X10:BA.AIOnlineCommunicationSkillsV                                 -0.127 *                 
##                                                                       (0.060)                  
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                        0.013                   
## Conditional R^2                           0.681                        0.683                   
## AIC                                    3044.495                     3048.114                   
## BIC                                    3098.236                     3111.626                   
## Num. obs.                               978                          978                       
## Num. groups: B.ID                       163                          163                       
## Var: B.ID (Intercept)                     1.714                        1.666                   
## Var: B.ID W.X10                           0.030                        0.027                   
## Var: B.ID W.X01                           0.042                        0.045                   
## Cov: B.ID (Intercept) W.X10              -0.053                       -0.026                   
## Cov: B.ID (Intercept) W.X01               0.015                        0.027                   
## Cov: B.ID W.X10 W.X01                    -0.035                       -0.035                   
## Var: Residual                             0.803                        0.800                   
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  4.42   1 452  .036 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.243 (0.101)  2.413  .016 *   [ 0.046, 0.441]
##  4.260 (Mean)                       0.093 (0.071)  1.309  .191     [-0.046, 0.233]
##  5.444 (+ SD)                      -0.057 (0.101) -0.562  .575     [-0.254, 0.141]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X10", mods="BA.ClarityOfInformationV",covs=c("W.X01","W.X01BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X01, W.X01BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X01 + W.X01BA.ClarityOfInformationV + W.X10*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.531 ***                         2.018 ***                    
##                                   (0.121)                           (0.420)                       
## W.X01                              0.168                             0.683 *                      
##                                   (0.247)                           (0.281)                       
## W.X01BA.ClarityOfInformationV     -0.037                            -0.156 *                      
##                                   (0.054)                           (0.062)                       
## W.X10                              0.058                             0.482 *                      
##                                   (0.062)                           (0.220)                       
## BA.ClarityOfInformationV                                             0.347 ***                    
##                                                                     (0.093)                       
## W.X10:BA.ClarityOfInformationV                                      -0.097 *                      
##                                                                     (0.048)                       
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                             0.046                        
## Conditional R^2                    0.763                             0.763                        
## AIC                             2902.694                          2900.666                        
## BIC                             2956.435                          2964.178                        
## Num. obs.                        978                               978                            
## Num. groups: B.ID                163                               163                            
## Var: B.ID (Intercept)              2.095                             1.912                        
## Var: B.ID W.X10                    0.010                             0.000                        
## Var: B.ID W.X01                    0.455                             0.383                        
## Cov: B.ID (Intercept) W.X10       -0.075                            -0.019                        
## Cov: B.ID (Intercept) W.X01       -0.374                            -0.285                        
## Cov: B.ID W.X10 W.X01              0.068                             0.003                        
## Var: Residual                      0.608                             0.608                        
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.ClarityOfInformationV  4.02   1 649  .045 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.181 (0.087)  2.085  .038 *   [ 0.011, 0.351]
##  4.356 (Mean)                0.058 (0.061)  0.950  .342     [-0.062, 0.179]
##  5.617 (+ SD)               -0.064 (0.087) -0.742  .459     [-0.234, 0.106]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.LearningBehaviorVBB.AITechnologyAnxietyV=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BB.AITechnologyAnxietyV",covs=c("W.X01","W.X01BB.AITechnologyAnxietyV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BB.AITechnologyAnxietyV
## - Covariates (C) : W.X01, W.X01BB.AITechnologyAnxietyV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BB.AITechnologyAnxietyV + W.X10*BB.AITechnologyAnxietyV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                       3.516 ***                 3.311 ***            
##                                  (0.124)                   (0.272)               
## W.X01                             0.277 *                   0.278                
##                                  (0.135)                   (0.153)               
## W.X01BB.AITechnologyAnxietyV     -0.088 *                  -0.089                
##                                  (0.040)                   (0.047)               
## W.X10                             0.136 *                   0.087                
##                                  (0.069)                   (0.152)               
## BB.AITechnologyAnxietyV                                     0.071                
##                                                            (0.084)               
## W.X10:BB.AITechnologyAnxietyV                               0.017                
##                                                            (0.047)               
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                      0.003                     0.005                
## Conditional R^2                   0.730                     0.729                
## AIC                            2931.811                  2942.249                
## BIC                            2985.279                  3005.438                
## Num. obs.                       954                       954                    
## Num. groups: B.ID               159                       159                    
## Var: B.ID (Intercept)             2.063                     2.066                
## Var: B.ID W.X10                   0.001                     0.000                
## Var: B.ID W.X01                   0.014                     0.012                
## Cov: B.ID (Intercept) W.X10       0.011                     0.008                
## Cov: B.ID (Intercept) W.X01      -0.056                    -0.057                
## Cov: B.ID W.X10 W.X01            -0.003                    -0.000                
## Var: Residual                     0.758                     0.761                
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────
##                                     F df1 df2     p    
## ───────────────────────────────────────────────────────
## W.X10 * BB.AITechnologyAnxietyV  0.13   1 586  .718    
## ───────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BB.AITechnologyAnxietyV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  1.416 (- SD)               0.111 (0.098) 1.135  .257     [-0.081, 0.303]
##  2.899 (Mean)               0.136 (0.069) 1.967  .050 *   [ 0.000, 0.272]
##  4.383 (+ SD)               0.161 (0.098) 1.646  .100     [-0.031, 0.353]
## ─────────────────────────────────────────────────────────────────────────
Sb10.WP.PerceivedWorkGrowthVBB.TrustInAIV=PROCESS(data2, y="WP.PerceivedWorkGrowthV", x="W.X10", mods="BB.TrustInAIV",covs=c("W.X01","W.X01BB.TrustInAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.PerceivedWorkGrowthV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BB.TrustInAIV
## - Covariates (C) : W.X01, W.X01BB.TrustInAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.PerceivedWorkGrowthV ~ W.X01 + W.X01BB.TrustInAIV + W.X10*BB.TrustInAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.PerceivedWorkGrowthV  (2) WP.PerceivedWorkGrowthV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.894 ***                    3.056 ***               
##                                (0.118)                      (0.363)                  
## W.X01                          -0.184                       -0.159                   
##                                (0.214)                      (0.240)                  
## W.X01BB.TrustInAIV              0.066                        0.059                   
##                                (0.054)                      (0.062)                  
## W.X10                           0.126                       -0.207                   
##                                (0.066)                      (0.207)                  
## BB.TrustInAIV                                                0.227 *                 
##                                                             (0.093)                  
## W.X10:BB.TrustInAIV                                          0.090                   
##                                                             (0.053)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                        0.048                   
## Conditional R^2                 0.726                        0.729                   
## AIC                          2902.193                     2901.098                   
## BIC                          2955.661                     2964.287                   
## Num. obs.                     954                          954                       
## Num. groups: B.ID             159                          159                       
## Var: B.ID (Intercept)           1.859                        1.794                   
## Var: B.ID W.X10                 0.005                        0.004                   
## Var: B.ID W.X01                 0.234                        0.237                   
## Cov: B.ID (Intercept) W.X10     0.009                       -0.029                   
## Cov: B.ID (Intercept) W.X01    -0.163                       -0.165                   
## Cov: B.ID W.X10 W.X01          -0.032                       -0.027                   
## Var: Residual                   0.696                        0.694                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.PerceivedWorkGrowthV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X10 * BB.TrustInAIV  2.87   1 600  .091 .  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.PerceivedWorkGrowthV" (Y)
## ───────────────────────────────────────────────────────────────
##  "BB.TrustInAIV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────
##  2.445 (- SD)     0.013 (0.094) 0.143  .886     [-0.170, 0.197]
##  3.689 (Mean)     0.126 (0.066) 1.901  .058 .   [-0.004, 0.255]
##  4.932 (+ SD)     0.238 (0.094) 2.545  .011 *   [ 0.055, 0.422]
## ───────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.546 ***                                          1.773 ***                                     
##                                          (0.122)                                            (0.435)                                        
## W.X01                                     0.372                                              0.785 **                                      
##                                          (0.233)                                            (0.270)                                        
## W.X01BA.AIOnlineCommunicationSkillsV     -0.078                                             -0.175 **                                      
##                                          (0.052)                                            (0.061)                                        
## W.X10                                     0.103                                              0.322                                         
##                                          (0.065)                                            (0.241)                                        
## BA.AIOnlineCommunicationSkillsV                                                              0.416 ***                                     
##                                                                                             (0.098)                                        
## W.X10:BA.AIOnlineCommunicationSkillsV                                                       -0.051                                         
##                                                                                             (0.055)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.002                                              0.066                                         
## Conditional R^2                           0.743                                              0.741                                         
## AIC                                    2944.121                                           2938.140                                         
## BIC                                    2997.862                                           3001.651                                         
## Num. obs.                               978                                                978                                             
## Num. groups: B.ID                       163                                                163                                             
## Var: B.ID (Intercept)                     2.106                                              1.871                                         
## Var: B.ID W.X10                           0.005                                              0.000                                         
## Var: B.ID W.X01                           0.206                                              0.170                                         
## Cov: B.ID (Intercept) W.X10              -0.062                                             -0.029                                         
## Cov: B.ID (Intercept) W.X01              -0.273                                             -0.206                                         
## Cov: B.ID W.X10 W.X01                     0.030                                              0.003                                         
## Var: Residual                             0.678                                              0.680                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  0.89   1 648  .347    
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.164 (0.092) 1.793  .073 .   [-0.015, 0.343]
##  4.260 (Mean)                       0.103 (0.065) 1.596  .111     [-0.024, 0.230]
##  5.444 (+ SD)                       0.042 (0.092) 0.464  .643     [-0.137, 0.222]
## ─────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.StructureV",covs=c("W.X01","W.X01BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X01, W.X01BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.StructureV + W.X10*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.879 ***                                     
##                                (0.122)                                            (0.391)                                        
## W.X01                           0.228                                              0.590 *                                       
##                                (0.212)                                            (0.249)                                        
## W.X01BA.StructureV             -0.045                                             -0.133 *                                       
##                                (0.048)                                            (0.058)                                        
## W.X10                           0.103                                              0.234                                         
##                                (0.065)                                            (0.219)                                        
## BA.StructureV                                                                      0.405 ***                                     
##                                                                                   (0.091)                                        
## W.X10:BA.StructureV                                                               -0.032                                         
##                                                                                   (0.051)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.079                                         
## Conditional R^2                 0.741                                              0.741                                         
## AIC                          2945.910                                           2937.265                                         
## BIC                          2999.651                                           3000.777                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.101                                              1.850                                         
## Var: B.ID W.X10                 0.002                                              0.004                                         
## Var: B.ID W.X01                 0.191                                              0.207                                         
## Cov: B.ID (Intercept) W.X10    -0.057                                             -0.042                                         
## Cov: B.ID (Intercept) W.X01    -0.272                                             -0.232                                         
## Cov: B.ID W.X10 W.X01           0.007                                              0.029                                         
## Var: Residual                   0.680                                              0.679                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X10 * BA.StructureV  0.39   1 618  .530    
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.144 (0.092) 1.572  .116     [-0.036, 0.323]
##  4.117 (Mean)     0.103 (0.065) 1.595  .111     [-0.024, 0.230]
##  5.394 (+ SD)     0.063 (0.092) 0.684  .495     [-0.117, 0.242]
## ───────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.ClarityOfInformationV",covs=c("W.X01","W.X01BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X01, W.X01BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.ClarityOfInformationV + W.X10*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.546 ***                                          2.009 ***                                     
##                                   (0.122)                                            (0.424)                                        
## W.X01                              0.388                                              0.747 **                                      
##                                   (0.224)                                            (0.263)                                        
## W.X01BA.ClarityOfInformationV     -0.080                                             -0.162 **                                      
##                                   (0.049)                                            (0.058)                                        
## W.X10                              0.103                                              0.306                                         
##                                   (0.065)                                            (0.233)                                        
## BA.ClarityOfInformationV                                                              0.353 ***                                     
##                                                                                      (0.093)                                        
## W.X10:BA.ClarityOfInformationV                                                       -0.047                                         
##                                                                                      (0.051)                                        
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.002                                              0.052                                         
## Conditional R^2                    0.742                                              0.741                                         
## AIC                             2944.204                                           2941.190                                         
## BIC                             2997.945                                           3004.702                                         
## Num. obs.                        978                                                978                                             
## Num. groups: B.ID                163                                                163                                             
## Var: B.ID (Intercept)              2.101                                              1.921                                         
## Var: B.ID W.X10                    0.002                                              0.003                                         
## Var: B.ID W.X01                    0.180                                              0.195                                         
## Cov: B.ID (Intercept) W.X10       -0.057                                             -0.038                                         
## Cov: B.ID (Intercept) W.X01       -0.260                                             -0.230                                         
## Cov: B.ID W.X10 W.X01              0.007                                              0.026                                         
## Var: Residual                      0.680                                              0.679                                         
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.ClarityOfInformationV  0.83   1 624  .364    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.162 (0.092) 1.771  .077 .   [-0.017, 0.341]
##  4.356 (Mean)                0.103 (0.065) 1.596  .111     [-0.024, 0.230]
##  5.617 (+ SD)                0.044 (0.092) 0.486  .627     [-0.135, 0.224]
## ──────────────────────────────────────────────────────────────────────────
Sb10.WA.ErrorStrainVBA.EffectivenessV=PROCESS(data2, y="WA.ErrorStrainV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ErrorStrainV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ErrorStrainV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────
##                              (1) WA.ErrorStrainV  (2) WA.ErrorStrainV
## ─────────────────────────────────────────────────────────────────────
## (Intercept)                     3.512 ***            2.342 ***       
##                                (0.117)              (0.353)          
## W.X01                          -0.029                0.282           
##                                (0.205)              (0.242)          
## W.X01BA.EffectivenessV         -0.037               -0.115 *         
##                                (0.048)              (0.058)          
## W.X10                           0.028                0.286           
##                                (0.078)              (0.242)          
## BA.EffectivenessV                                    0.294 ***       
##                                                     (0.084)          
## W.X10:BA.EffectivenessV                             -0.065           
##                                                     (0.058)          
## ─────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.004                0.044           
## Conditional R^2                 0.615                0.615           
## AIC                          3162.854             3162.018           
## BIC                          3216.594             3225.529           
## Num. obs.                     978                  978               
## Num. groups: B.ID             163                  163               
## Var: B.ID (Intercept)           1.744                1.600           
## Var: B.ID W.X10                 0.013                0.009           
## Var: B.ID W.X01                 0.015                0.010           
## Cov: B.ID (Intercept) W.X10    -0.151               -0.120           
## Cov: B.ID (Intercept) W.X01    -0.164               -0.128           
## Cov: B.ID W.X10 W.X01           0.014                0.010           
## Var: Residual                   0.972                0.972           
## ─────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ErrorStrainV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  1.26   1 751  .261    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ErrorStrainV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.115 (0.110)  1.052  .293     [-0.100, 0.331]
##  3.982 (Mean)         0.028 (0.078)  0.364  .716     [-0.124, 0.180]
##  5.329 (+ SD)        -0.059 (0.110) -0.538  .591     [-0.274, 0.156]
## ────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.QualityV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X10", mods="BA.QualityV",covs=c("W.X01","W.X01BA.QualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.QualityV
## - Covariates (C) : W.X01, W.X01BA.QualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X01 + W.X01BA.QualityV + W.X10*BA.QualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.531 ***                         1.257 ***                    
##                                (0.121)                           (0.335)                       
## W.X01                          -0.050                             0.529 *                      
##                                (0.219)                           (0.254)                       
## W.X01BA.QualityV                0.014                            -0.128 *                      
##                                (0.050)                           (0.059)                       
## W.X10                           0.058                             0.216                        
##                                (0.062)                           (0.195)                       
## BA.QualityV                                                       0.555 ***                    
##                                                                  (0.078)                       
## W.X10:BA.QualityV                                                -0.038                        
##                                                                  (0.045)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                             0.185                        
## Conditional R^2                 0.761                             0.762                        
## AIC                          2903.240                          2868.548                        
## BIC                          2956.980                          2932.059                        
## Num. obs.                     978                               978                            
## Num. groups: B.ID             163                               163                            
## Var: B.ID (Intercept)           2.096                             1.528                        
## Var: B.ID W.X10                 0.011                             0.010                        
## Var: B.ID W.X01                 0.478                             0.441                        
## Cov: B.ID (Intercept) W.X10    -0.075                            -0.036                        
## Cov: B.ID (Intercept) W.X01    -0.409                            -0.264                        
## Cov: B.ID W.X10 W.X01           0.074                             0.065                        
## Var: Residual                   0.608                             0.608                        
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X10 * BA.QualityV  0.73   1 575  .394    
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────
##  "BA.QualityV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  2.728 (- SD)   0.111 (0.087) 1.273  .204     [-0.060, 0.282]
##  4.094 (Mean)   0.058 (0.062) 0.947  .344     [-0.062, 0.179]
##  5.460 (+ SD)   0.006 (0.087) 0.066  .948     [-0.165, 0.176]
## ─────────────────────────────────────────────────────────────
Sb10.WP.SocialLearningVBA.ProblemSolvingConfidenceV=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.ProblemSolvingConfidenceV",covs=c("W.X01","W.X01BA.ProblemSolvingConfidenceV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : W.X01, W.X01BA.ProblemSolvingConfidenceV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.ProblemSolvingConfidenceV + W.X10*BA.ProblemSolvingConfidenceV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                     (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                            3.656 ***               0.875              
##                                       (0.109)                 (0.455)             
## W.X01                                  0.009                   0.011              
##                                       (0.278)                 (0.315)             
## W.X01BA.ProblemSolvingConfidenceV      0.015                   0.014              
##                                       (0.062)                 (0.070)             
## W.X10                                  0.115                  -0.694 *            
##                                       (0.069)                 (0.317)             
## BA.ProblemSolvingConfidenceV                                   0.636 ***          
##                                                               (0.101)             
## W.X10:BA.ProblemSolvingConfidenceV                             0.185 **           
##                                                               (0.071)             
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                           0.001                   0.198              
## Conditional R^2                        0.687                   0.689              
## AIC                                 2964.897                2915.817              
## BIC                                 3018.638                2979.329              
## Num. obs.                            978                     978                  
## Num. groups: B.ID                    163                     163                  
## Var: B.ID (Intercept)                  1.567                   1.198              
## Var: B.ID W.X10                        0.034                   0.021              
## Var: B.ID W.X01                        0.017                   0.014              
## Cov: B.ID (Intercept) W.X10            0.043                  -0.076              
## Cov: B.ID (Intercept) W.X01            0.014                   0.013              
## Cov: B.ID W.X10 W.X01                 -0.023                  -0.016              
## Var: Residual                          0.741                   0.740              
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────
##                                          F df1 df2     p    
## ────────────────────────────────────────────────────────────
## W.X10 * BA.ProblemSolvingConfidenceV  6.84   1 491  .009 ** 
## ────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────
##  3.409 (- SD)                   -0.064 (0.096) -0.662  .508     [-0.253, 0.125]
##  4.376 (Mean)                    0.115 (0.068)  1.688  .092 .   [-0.019, 0.249]
##  5.343 (+ SD)                    0.294 (0.096)  3.049  .002 **  [ 0.105, 0.483]
## ───────────────────────────────────────────────────────────────────────────────
Sb10.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV=PROCESS(data2, y="WP.AIUsageForFacilitatingWorkV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIUsageForFacilitatingWorkV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIUsageForFacilitatingWorkV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIUsageForFacilitatingWorkV  (2) WP.AIUsageForFacilitatingWorkV
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     2.717 ***                           4.383 ***                      
##                                (0.129)                             (0.399)                         
## W.X01                          -0.169                              -0.394                          
##                                (0.210)                             (0.237)                         
## W.X01BA.PersonalControlV        0.049                               0.106                          
##                                (0.050)                             (0.057)                         
## W.X10                           0.127                              -0.060                          
##                                (0.070)                             (0.225)                         
## BA.PersonalControlV                                                -0.421 ***                      
##                                                                    (0.096)                         
## W.X10:BA.PersonalControlV                                           0.047                          
##                                                                    (0.054)                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                               0.077                          
## Conditional R^2                 0.747                               0.740                          
## AIC                          3046.378                            3040.853                          
## BIC                          3100.119                            3104.365                          
## Num. obs.                     978                                 978                              
## Num. groups: B.ID             163                                 163                              
## Var: B.ID (Intercept)           2.327                               2.054                          
## Var: B.ID W.X10                 0.053                               0.007                          
## Var: B.ID W.X01                 0.061                               0.094                          
## Cov: B.ID (Intercept) W.X10    -0.149                              -0.117                          
## Cov: B.ID (Intercept) W.X01    -0.065                              -0.055                          
## Cov: B.ID W.X10 W.X01          -0.047                               0.003                          
## Var: Residual                   0.755                               0.772                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIUsageForFacilitatingWorkV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  0.76   1 611  .385    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIUsageForFacilitatingWorkV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.067 (0.100) 0.669  .504     [-0.129, 0.262]
##  3.954 (Mean)           0.127 (0.070) 1.801  .073 .   [-0.011, 0.265]
##  5.230 (+ SD)           0.187 (0.100) 1.877  .061 .   [-0.008, 0.382]
## ─────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.PersonalControlV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.721 ***                    5.761 ***               
##                                (0.119)                      (0.351)                  
## W.X01                           0.253                       -0.218                   
##                                (0.197)                      (0.227)                  
## W.X01BA.PersonalControlV       -0.081                        0.038                   
##                                (0.047)                      (0.055)                  
## W.X10                           0.006                       -0.455 *                 
##                                (0.068)                      (0.222)                  
## BA.PersonalControlV                                         -0.516 ***               
##                                                             (0.085)                  
## W.X10:BA.PersonalControlV                                    0.117 *                 
##                                                             (0.053)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                        0.137                   
## Conditional R^2                 0.705                        0.709                   
## AIC                          2986.414                     2964.143                   
## BIC                          3040.155                     3027.655                   
## Num. obs.                     978                          978                       
## Num. groups: B.ID             163                          163                       
## Var: B.ID (Intercept)           1.932                        1.516                   
## Var: B.ID W.X10                 0.011                        0.000                   
## Var: B.ID W.X01                 0.042                        0.034                   
## Cov: B.ID (Intercept) W.X10    -0.101                       -0.016                   
## Cov: B.ID (Intercept) W.X01    -0.139                       -0.056                   
## Cov: B.ID W.X10 W.X01          -0.006                        0.001                   
## Var: Residual                   0.752                        0.753                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  4.78   1 582  .029 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.143 (0.096) -1.482  .139     [-0.331, 0.046]
##  3.954 (Mean)           0.006 (0.068)  0.090  .928     [-0.127, 0.139]
##  5.230 (+ SD)           0.155 (0.096)  1.610  .108     [-0.034, 0.343]
## ──────────────────────────────────────────────────────────────────────
Sb10.WP.SocialLearningVBA.PositiveReflectionOnAIUseV=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.PositiveReflectionOnAIUseV",covs=c("W.X01","W.X01BA.PositiveReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.PositiveReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.PositiveReflectionOnAIUseV + W.X10*BA.PositiveReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.656 ***               1.971 ***          
##                                        (0.109)                 (0.301)             
## W.X01                                   0.064                   0.033              
##                                        (0.184)                 (0.207)             
## W.X01BA.PositiveReflectionOnAIUseV      0.002                   0.010              
##                                        (0.042)                 (0.048)             
## W.X10                                   0.115                  -0.431 *            
##                                        (0.069)                 (0.207)             
## BA.PositiveReflectionOnAIUseV                                   0.417 ***          
##                                                                (0.070)             
## W.X10:BA.PositiveReflectionOnAIUseV                             0.135 **           
##                                                                (0.049)             
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.001                   0.185              
## Conditional R^2                         0.687                   0.689              
## AIC                                  2965.685                2920.719              
## BIC                                  3019.426                2984.230              
## Num. obs.                             978                     978                  
## Num. groups: B.ID                     163                     163                  
## Var: B.ID (Intercept)                   1.567                   1.232              
## Var: B.ID W.X10                         0.033                   0.020              
## Var: B.ID W.X01                         0.017                   0.014              
## Cov: B.ID (Intercept) W.X10             0.044                  -0.079              
## Cov: B.ID (Intercept) W.X01             0.021                   0.013              
## Cov: B.ID W.X10 W.X01                  -0.022                  -0.015              
## Var: Residual                           0.742                   0.740              
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X10 * BA.PositiveReflectionOnAIUseV  7.79   1 507  .005 ** 
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  2.629 (- SD)                    -0.076 (0.097) -0.783  .434     [-0.265, 0.114]
##  4.037 (Mean)                     0.115 (0.068)  1.685  .093 .   [-0.019, 0.249]
##  5.444 (+ SD)                     0.306 (0.097)  3.165  .002 **  [ 0.116, 0.495]
## ────────────────────────────────────────────────────────────────────────────────
Sb10.WP.FamilyMemberUndermingVBA.AIServiceFailureV=PROCESS(data2, y="WP.FamilyMemberUndermingV", x="W.X10", mods="BA.AIServiceFailureV",covs=c("W.X01","W.X01BA.AIServiceFailureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberUndermingV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : W.X01, W.X01BA.AIServiceFailureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberUndermingV ~ W.X01 + W.X01BA.AIServiceFailureV + W.X10*BA.AIServiceFailureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FamilyMemberUndermingV  (2) WP.FamilyMemberUndermingV
## ─────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     1.525 ***                      0.548 *                   
##                                (0.086)                        (0.229)                    
## W.X01                          -0.290 *                       -0.045                     
##                                (0.122)                        (0.140)                    
## W.X01BA.AIServiceFailureV       0.075 *                        0.007                     
##                                (0.031)                        (0.036)                    
## W.X10                          -0.024                          0.333 *                   
##                                (0.051)                        (0.141)                    
## BA.AIServiceFailureV                                           0.270 ***                 
##                                                               (0.059)                    
## W.X10:BA.AIServiceFailureV                                    -0.099 **                  
##                                                               (0.036)                    
## ─────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                          0.085                     
## Conditional R^2                 0.691                          0.698                     
## AIC                          2352.923                       2345.317                     
## BIC                          2406.663                       2408.829                     
## Num. obs.                     978                            978                         
## Num. groups: B.ID             163                            163                         
## Var: B.ID (Intercept)           1.005                          0.877                     
## Var: B.ID W.X10                 0.015                          0.007                     
## Var: B.ID W.X01                 0.003                          0.001                     
## Cov: B.ID (Intercept) W.X10    -0.123                         -0.080                     
## Cov: B.ID (Intercept) W.X01    -0.053                         -0.024                     
## Cov: B.ID W.X10 W.X01           0.006                          0.002                     
## Var: Residual                   0.402                          0.400                     
## ─────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberUndermingV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X10 * BA.AIServiceFailureV  7.36   1 705  .007 ** 
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.FamilyMemberUndermingV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.249 (- SD)            0.112 (0.071)  1.582  .114     [-0.027,  0.250]
##  3.626 (Mean)           -0.024 (0.050) -0.476  .634     [-0.122,  0.074]
##  5.002 (+ SD)           -0.159 (0.071) -2.255  .024 *   [-0.298, -0.021]
## ────────────────────────────────────────────────────────────────────────
Sb10.WP.FamilyMemberConflictVBA.AIServiceFailureV=PROCESS(data2, y="WP.FamilyMemberConflictV", x="W.X10", mods="BA.AIServiceFailureV",covs=c("W.X01","W.X01BA.AIServiceFailureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberConflictV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : W.X01, W.X01BA.AIServiceFailureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberConflictV ~ W.X01 + W.X01BA.AIServiceFailureV + W.X10*BA.AIServiceFailureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FamilyMemberConflictV  (2) WP.FamilyMemberConflictV
## ───────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     1.475 ***                     0.504 *                  
##                                (0.083)                       (0.221)                   
## W.X01                          -0.254 *                      -0.018                    
##                                (0.114)                       (0.129)                   
## W.X01BA.AIServiceFailureV       0.066 *                       0.001                    
##                                (0.029)                       (0.033)                   
## W.X10                          -0.048                         0.331 *                  
##                                (0.047)                       (0.130)                   
## BA.AIServiceFailureV                                          0.268 ***                
##                                                              (0.057)                   
## W.X10:BA.AIServiceFailureV                                   -0.104 **                 
##                                                              (0.033)                   
## ───────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                         0.088                    
## Conditional R^2                 0.716                         0.723                    
## AIC                          2220.087                      2210.493                    
## BIC                          2273.828                      2274.005                    
## Num. obs.                     978                           978                        
## Num. groups: B.ID             163                           163                        
## Var: B.ID (Intercept)           0.954                         0.828                    
## Var: B.ID W.X10                 0.012                         0.005                    
## Var: B.ID W.X01                 0.001                         0.000                    
## Cov: B.ID (Intercept) W.X10    -0.107                        -0.062                    
## Cov: B.ID (Intercept) W.X01    -0.032                        -0.005                    
## Cov: B.ID W.X10 W.X01           0.004                         0.000                    
## Var: Residual                   0.344                         0.342                    
## ───────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberConflictV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X10 * BA.AIServiceFailureV  9.70   1 728  .002 ** 
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.FamilyMemberConflictV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.249 (- SD)            0.096 (0.065)  1.473  .141     [-0.032,  0.224]
##  3.626 (Mean)           -0.048 (0.046) -1.032  .303     [-0.138,  0.043]
##  5.002 (+ SD)           -0.191 (0.065) -2.932  .003 **  [-0.319, -0.063]
## ────────────────────────────────────────────────────────────────────────
Sb10.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV=PROCESS(data2, y="WP.FeedbackSeekingForSystemImprovementV", x="W.X10", mods="BA.AnthropomorphismV",covs=c("W.X01","W.X01BA.AnthropomorphismV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FeedbackSeekingForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AnthropomorphismV
## - Covariates (C) : W.X01, W.X01BA.AnthropomorphismV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FeedbackSeekingForSystemImprovementV ~ W.X01 + W.X01BA.AnthropomorphismV + W.X10*BA.AnthropomorphismV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FeedbackSeekingForSystemImprovementV  (2) WP.FeedbackSeekingForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.188 ***                                    1.988 ***                               
##                                (0.117)                                      (0.242)                                  
## W.X01                           0.204                                        0.333 *                                 
##                                (0.136)                                      (0.152)                                  
## W.X01BA.AnthropomorphismV      -0.051                                       -0.096 *                                 
##                                (0.041)                                      (0.047)                                  
## W.X10                           0.106                                        0.227                                   
##                                (0.068)                                      (0.152)                                  
## BA.AnthropomorphismV                                                         0.415 ***                               
##                                                                             (0.075)                                  
## W.X10:BA.AnthropomorphismV                                                  -0.042                                   
##                                                                             (0.047)                                  
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                        0.114                                   
## Conditional R^2                 0.709                                        0.706                                   
## AIC                          2958.523                                     2940.496                                   
## BIC                          3012.264                                     3004.007                                   
## Num. obs.                     978                                          978                                       
## Num. groups: B.ID             163                                          163                                       
## Var: B.ID (Intercept)           1.867                                        1.522                                   
## Var: B.ID W.X10                 0.010                                        0.006                                   
## Var: B.ID W.X01                 0.010                                        0.007                                   
## Cov: B.ID (Intercept) W.X10    -0.133                                       -0.099                                   
## Cov: B.ID (Intercept) W.X01     0.002                                        0.038                                   
## Cov: B.ID W.X10 W.X01          -0.000                                       -0.002                                   
## Var: Residual                   0.736                                        0.737                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X10 * BA.AnthropomorphismV  0.79   1 612  .375    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.AnthropomorphismV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  1.457 (- SD)            0.166 (0.096) 1.736  .083 .   [-0.021, 0.353]
##  2.893 (Mean)            0.106 (0.068) 1.567  .118     [-0.026, 0.238]
##  4.330 (+ SD)            0.046 (0.096) 0.480  .632     [-0.141, 0.233]
## ──────────────────────────────────────────────────────────────────────

6.2 Plot

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV$model.y, W.X10, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV$model.y, W.X10, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.PositiveReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV$model.y, W.X10, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.StructureV$model.y, W.X10, BA.StructureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV$model.y, W.X10, BA.NegativeReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.NegativeReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.LearningFromErrorsVBB.AIUsageV$model.y, W.X10, BB.AIUsageV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BB.AIUsageV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.LearningFromErrorsVBA.AIInteractionQualityV$model.y, W.X10, BA.AIInteractionQualityV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIInteractionQualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV$model.y, W.X10, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.LearningBehaviorVBB.AITechnologyAnxietyV$model.y, W.X10, BB.AITechnologyAnxietyV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BB.AITechnologyAnxietyV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.PerceivedWorkGrowthVBB.TrustInAIV$model.y, W.X10, BB.TrustInAIV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BB.TrustInAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV$model.y, W.X10, BA.StructureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV$model.y, W.X10, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.ErrorStrainVBA.EffectivenessV$model.y, W.X10, BA.EffectivenessV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.EffectivenessV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.QualityV$model.y, W.X10, BA.QualityV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.QualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SocialLearningVBA.ProblemSolvingConfidenceV$model.y, W.X10, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ProblemSolvingConfidenceV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV$model.y, W.X10, BA.PersonalControlV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.PersonalControlV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.PersonalControlV$model.y, W.X10, BA.PersonalControlV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.PersonalControlV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SocialLearningVBA.PositiveReflectionOnAIUseV$model.y, W.X10, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.PositiveReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FamilyMemberUndermingVBA.AIServiceFailureV$model.y, W.X10, BA.AIServiceFailureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIServiceFailureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FamilyMemberConflictVBA.AIServiceFailureV$model.y, W.X10, BA.AIServiceFailureV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIServiceFailureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV$model.y, W.X10, BA.AnthropomorphismV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AnthropomorphismV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

7 STUDY 2 FOR W.X01USING .05 AS STANDARD

7.1 Analysis

Sb10.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X10                                     0.274                                         0.692 **                                 
##                                          (0.241)                                       (0.259)                                   
## W.X10BA.AIOnlineCommunicationSkillsV     -0.055                                        -0.154 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X01                                     0.039                                         0.699 **                                 
##                                          (0.070)                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X01:BA.AIOnlineCommunicationSkillsV                                                  -0.155 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                                         0.077                                    
## Conditional R^2                           0.686                                         0.687                                    
## AIC                                    2959.761                                      2944.105                                    
## BIC                                    3013.501                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.553                                         1.294                                    
## Var: B.ID W.X10                           0.079                                         0.084                                    
## Var: B.ID W.X01                           0.096                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.008                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.092                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.084                                        -0.087                                    
## Var: Residual                             0.709                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  6.92   1 329  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.223 (0.103)  2.162  .032 *   [ 0.021, 0.425]
##  4.260 (Mean)                       0.039 (0.073)  0.539  .590     [-0.103, 0.182]
##  5.444 (+ SD)                      -0.144 (0.103) -1.400  .163     [-0.346, 0.058]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.StructureV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.StructureV",covs=c("W.X10","W.X10BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X10, W.X10BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.StructureV + W.X01*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.413 ***                                     1.591 ***                                
##                                (0.108)                                       (0.335)                                   
## W.X10                           0.265                                         0.659 **                                 
##                                (0.218)                                       (0.234)                                   
## W.X10BA.StructureV             -0.055                                        -0.151 **                                 
##                                (0.050)                                       (0.054)                                   
## W.X01                           0.039                                         0.662 **                                 
##                                (0.070)                                       (0.235)                                   
## BA.StructureV                                                                 0.443 ***                                
##                                                                              (0.078)                                   
## W.X01:BA.StructureV                                                          -0.151 **                                 
##                                                                              (0.055)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                         0.089                                    
## Conditional R^2                 0.686                                         0.688                                    
## AIC                          2959.794                                      2940.396                                    
## BIC                          3013.534                                      3003.907                                    
## Num. obs.                     978                                           978                                        
## Num. groups: B.ID             163                                           163                                        
## Var: B.ID (Intercept)           1.554                                         1.256                                    
## Var: B.ID W.X10                 0.078                                         0.085                                    
## Var: B.ID W.X01                 0.097                                         0.090                                    
## Cov: B.ID (Intercept) W.X10    -0.004                                         0.048                                    
## Cov: B.ID (Intercept) W.X01    -0.093                                        -0.002                                    
## Cov: B.ID W.X10 W.X01          -0.084                                        -0.087                                    
## Var: Residual                   0.708                                         0.701                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X01 * BA.StructureV  7.68   1 330  .006 ** 
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.232 (0.099)  2.359  .019 *   [ 0.039, 0.426]
##  4.117 (Mean)     0.039 (0.070)  0.563  .573     [-0.097, 0.176]
##  5.394 (+ SD)    -0.154 (0.099) -1.562  .119     [-0.347, 0.039]
## ────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.WayOfQuestioningV",covs=c("W.X10","W.X10BA.WayOfQuestioningV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : W.X10, W.X10BA.WayOfQuestioningV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.WayOfQuestioningV + W.X01*BA.WayOfQuestioningV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.413 ***                                     1.840 ***                                
##                                (0.108)                                       (0.369)                                   
## W.X10                           0.200                                         0.562 *                                  
##                                (0.232)                                       (0.251)                                   
## W.X10BA.WayOfQuestioningV      -0.038                                        -0.122 *                                  
##                                (0.051)                                       (0.056)                                   
## W.X01                           0.039                                         0.610 *                                  
##                                (0.070)                                       (0.251)                                   
## BA.WayOfQuestioningV                                                          0.365 ***                                
##                                                                              (0.082)                                   
## W.X01:BA.WayOfQuestioningV                                                   -0.132 *                                  
##                                                                              (0.056)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                                         0.057                                    
## Conditional R^2                 0.684                                         0.686                                    
## AIC                          2960.288                                      2951.915                                    
## BIC                          3014.029                                      3015.427                                    
## Num. obs.                     978                                           978                                        
## Num. groups: B.ID             163                                           163                                        
## Var: B.ID (Intercept)           1.551                                         1.362                                    
## Var: B.ID W.X10                 0.081                                         0.084                                    
## Var: B.ID W.X01                 0.094                                         0.088                                    
## Cov: B.ID (Intercept) W.X10    -0.019                                         0.017                                    
## Cov: B.ID (Intercept) W.X01    -0.090                                        -0.028                                    
## Cov: B.ID W.X10 W.X01          -0.083                                        -0.086                                    
## Var: Residual                   0.710                                         0.705                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X01 * BA.WayOfQuestioningV  5.59   1 330  .019 *  
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  3.061 (- SD)            0.204 (0.103)  1.981  .049 *   [ 0.002, 0.406]
##  4.307 (Mean)            0.039 (0.073)  0.539  .590     [-0.104, 0.182]
##  5.552 (+ SD)           -0.126 (0.103) -1.220  .224     [-0.328, 0.076]
## ───────────────────────────────────────────────────────────────────────
Sb10.WA.AffectiveRuminationVBA.ClarityOfInformationV=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X01", mods="BA.ClarityOfInformationV",covs=c("W.X10","W.X10BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X10, W.X10BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X10 + W.X10BA.ClarityOfInformationV + W.X01*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.731 ***                    3.029 ***               
##                                   (0.114)                      (0.408)                  
## W.X10                              0.361                        0.631 *                 
##                                   (0.227)                      (0.256)                  
## W.X10BA.ClarityOfInformationV     -0.061                       -0.123 *                 
##                                   (0.049)                      (0.057)                  
## W.X01                              0.055                        0.525 *                 
##                                   (0.072)                      (0.259)                  
## BA.ClarityOfInformationV                                        0.161                   
##                                                                (0.090)                  
## W.X01:BA.ClarityOfInformationV                                 -0.108                   
##                                                                (0.057)                  
## ────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                        0.007                   
## Conditional R^2                    0.682                        0.683                   
## AIC                             3043.765                     3049.476                   
## BIC                             3097.506                     3112.987                   
## Num. obs.                        978                          978                       
## Num. groups: B.ID                163                          163                       
## Var: B.ID (Intercept)              1.716                        1.691                   
## Var: B.ID W.X10                    0.026                        0.027                   
## Var: B.ID W.X01                    0.048                        0.045                   
## Cov: B.ID (Intercept) W.X10       -0.042                       -0.033                   
## Cov: B.ID (Intercept) W.X01        0.001                        0.020                   
## Cov: B.ID W.X10 W.X01             -0.034                       -0.035                   
## Var: Residual                      0.802                        0.799                   
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.ClarityOfInformationV  3.58   1 366  .059 .  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.191 (0.102)  1.874  .062 .   [-0.009, 0.390]
##  4.356 (Mean)                0.055 (0.072)  0.759  .449     [-0.086, 0.196]
##  5.617 (+ SD)               -0.082 (0.102) -0.802  .423     [-0.281, 0.118]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.617 ***                                  1.877 ***                             
##                                   (0.111)                                    (0.315)                                
## W.X10                             -0.908 ***                                 -0.500 *                               
##                                   (0.217)                                    (0.250)                                
## W.X10BA.AIInteractionQualityV      0.241 ***                                  0.139 *                               
##                                   (0.050)                                    (0.059)                                
## W.X01                              0.067                                      0.076                                 
##                                   (0.083)                                    (0.260)                                
## BA.AIInteractionQualityV                                                      0.434 ***                             
##                                                                              (0.074)                                
## W.X01:BA.AIInteractionQualityV                                               -0.002                                 
##                                                                              (0.061)                                
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.014                                      0.162                                 
## Conditional R^2                    0.593                                      0.608                                 
## AIC                             3246.811                                   3223.892                                 
## BIC                             3300.552                                   3287.404                                 
## Num. obs.                        978                                        978                                     
## Num. groups: B.ID                163                                        163                                     
## Var: B.ID (Intercept)              1.488                                      1.153                                 
## Var: B.ID W.X10                    0.025                                      0.000                                 
## Var: B.ID W.X01                    0.050                                      0.085                                 
## Cov: B.ID (Intercept) W.X10       -0.096                                     -0.024                                 
## Cov: B.ID (Intercept) W.X01        0.086                                      0.066                                 
## Cov: B.ID W.X10 W.X01             -0.034                                     -0.001                                 
## Var: Residual                      1.060                                      1.062                                 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.00   1 262  .971    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.071 (0.117) 0.602  .548     [-0.159, 0.300]
##  4.006 (Mean)                0.067 (0.083) 0.815  .416     [-0.095, 0.230]
##  5.372 (+ SD)                0.064 (0.117) 0.550  .583     [-0.165, 0.294]
## ──────────────────────────────────────────────────────────────────────────
Sb10.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV=PROCESS(data2, y="WA.SelfReflectionForManipulationCheckV", x="W.X01", mods="BA.ProblemSolvingConfidenceV",covs=c("W.X10","W.X10BA.ProblemSolvingConfidenceV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.SelfReflectionForManipulationCheckV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : W.X10, W.X10BA.ProblemSolvingConfidenceV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.SelfReflectionForManipulationCheckV ~ W.X10 + W.X10BA.ProblemSolvingConfidenceV + W.X01*BA.ProblemSolvingConfidenceV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                     (1) WA.SelfReflectionForManipulationCheckV  (2) WA.SelfReflectionForManipulationCheckV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                            4.104 ***                                   0.534                                  
##                                       (0.110)                                     (0.425)                                 
## W.X10                                  0.009                                       0.600 *                                
##                                       (0.252)                                     (0.291)                                 
## W.X10BA.ProblemSolvingConfidenceV      0.007                                      -0.128 *                                
##                                       (0.056)                                     (0.065)                                 
## W.X01                                  0.007                                       0.322                                  
##                                       (0.067)                                     (0.311)                                 
## BA.ProblemSolvingConfidenceV                                                       0.816 ***                              
##                                                                                   (0.095)                                 
## W.X01:BA.ProblemSolvingConfidenceV                                                -0.072                                  
##                                                                                   (0.069)                                 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                           0.000                                       0.245                                  
## Conditional R^2                        0.700                                       0.702                                  
## AIC                                 2843.375                                    2786.485                                  
## BIC                                 2897.116                                    2849.997                                  
## Num. obs.                            978                                         978                                      
## Num. groups: B.ID                    163                                         163                                      
## Var: B.ID (Intercept)                  1.662                                       1.047                                  
## Var: B.ID W.X10                        0.009                                       0.001                                  
## Var: B.ID W.X01                        0.094                                       0.091                                  
## Cov: B.ID (Intercept) W.X10           -0.121                                      -0.023                                  
## Cov: B.ID (Intercept) W.X01           -0.168                                      -0.115                                  
## Cov: B.ID W.X10 W.X01                  0.012                                       0.003                                  
## Var: Residual                          0.645                                       0.643                                  
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.SelfReflectionForManipulationCheckV" (Y)
## ────────────────────────────────────────────────────────────
##                                          F df1 df2     p    
## ────────────────────────────────────────────────────────────
## W.X01 * BA.ProblemSolvingConfidenceV  1.08   1 247  .300    
## ────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.SelfReflectionForManipulationCheckV" (Y)
## ───────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────
##  3.409 (- SD)                    0.077 (0.095)  0.811  .418     [-0.109, 0.262]
##  4.376 (Mean)                    0.007 (0.067)  0.103  .918     [-0.124, 0.138]
##  5.343 (+ SD)                   -0.063 (0.095) -0.665  .507     [-0.248, 0.122]
## ───────────────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X01", mods="BA.WayOfQuestioningV",covs=c("W.X10","W.X10BA.WayOfQuestioningV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.WayOfQuestioningV
## - Covariates (C) : W.X10, W.X10BA.WayOfQuestioningV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X10 + W.X10BA.WayOfQuestioningV + W.X01*BA.WayOfQuestioningV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.474 ***                            2.112 ***                       
##                                (0.114)                              (0.399)                          
## W.X10                          -0.312                                0.060                           
##                                (0.211)                              (0.245)                          
## W.X10BA.WayOfQuestioningV       0.095 *                              0.009                           
##                                (0.046)                              (0.055)                          
## W.X01                          -0.050                                0.449                           
##                                (0.068)                              (0.245)                          
## BA.WayOfQuestioningV                                                 0.316 ***                       
##                                                                     (0.089)                          
## W.X01:BA.WayOfQuestioningV                                          -0.116 *                         
##                                                                     (0.055)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                0.051                           
## Conditional R^2                 0.699                                0.704                           
## AIC                          2976.699                             2974.051                           
## BIC                          3030.439                             3037.562                           
## Num. obs.                     978                                  978                               
## Num. groups: B.ID             163                                  163                               
## Var: B.ID (Intercept)           1.757                                1.621                           
## Var: B.ID W.X10                 0.000                                0.000                           
## Var: B.ID W.X01                 0.000                                0.002                           
## Cov: B.ID (Intercept) W.X10    -0.021                                0.011                           
## Cov: B.ID (Intercept) W.X01     0.009                                0.053                           
## Cov: B.ID W.X10 W.X01          -0.000                                0.000                           
## Var: Residual                   0.758                                0.754                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X01 * BA.WayOfQuestioningV  4.49   1 795  .034 *  
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.WayOfQuestioningV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  3.061 (- SD)            0.094 (0.096)  0.976  .329     [-0.095,  0.283]
##  4.307 (Mean)           -0.050 (0.068) -0.739  .460     [-0.184,  0.083]
##  5.552 (+ SD)           -0.195 (0.096) -2.021  .044 *   [-0.384, -0.006]
## ────────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X01", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X10","W.X10BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X10, W.X10BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X10 + W.X10BA.NeedForPersonalizationDueToAIV + W.X01*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.721 ***                    1.974 ***               
##                                            (0.119)                      (0.338)                  
## W.X10                                      -0.219                        0.203                   
##                                            (0.183)                      (0.210)                  
## W.X10BA.NeedForPersonalizationDueToAIV      0.055                       -0.048                   
##                                            (0.042)                      (0.049)                  
## W.X01                                      -0.066                        0.349                   
##                                            (0.069)                      (0.212)                  
## BA.NeedForPersonalizationDueToAIV                                        0.429 ***               
##                                                                         (0.079)                  
## W.X01:BA.NeedForPersonalizationDueToAIV                                 -0.102 *                 
##                                                                         (0.049)                  
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.001                        0.110                   
## Conditional R^2                             0.706                        0.707                   
## AIC                                      2987.601                     2971.736                   
## BIC                                      3041.342                     3035.247                   
## Num. obs.                                 978                          978                       
## Num. groups: B.ID                         163                          163                       
## Var: B.ID (Intercept)                       1.931                        1.587                   
## Var: B.ID W.X10                             0.019                        0.003                   
## Var: B.ID W.X01                             0.027                        0.018                   
## Cov: B.ID (Intercept) W.X10                -0.144                       -0.070                   
## Cov: B.ID (Intercept) W.X01                -0.075                       -0.002                   
## Cov: B.ID W.X10 W.X01                      -0.009                        0.000                   
## Var: Residual                               0.753                        0.758                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X01 * BA.NeedForPersonalizationDueToAIV  4.28   1 181  .040 *  
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.077 (0.097)  0.787  .432     [-0.114,  0.268]
##  4.071 (Mean)                        -0.066 (0.069) -0.957  .339     [-0.201,  0.069]
##  5.470 (+ SD)                        -0.209 (0.097) -2.140  .033 *   [-0.400, -0.018]
## ─────────────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X01", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X10","W.X10BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X10, W.X10BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X10 + W.X10BA.NeedForPersonalizationDueToAIV + W.X01*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.531 ***                         1.851 ***                    
##                                            (0.121)                           (0.347)                       
## W.X10                                       0.071                             0.353                        
##                                            (0.169)                           (0.189)                       
## W.X10BA.NeedForPersonalizationDueToAIV     -0.003                            -0.072                        
##                                            (0.039)                           (0.044)                       
## W.X01                                       0.006                             0.557 *                      
##                                            (0.081)                           (0.246)                       
## BA.NeedForPersonalizationDueToAIV                                             0.413 ***                    
##                                                                              (0.081)                       
## W.X01:BA.NeedForPersonalizationDueToAIV                                      -0.136 *                      
##                                                                              (0.057)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.000                             0.093                        
## Conditional R^2                             0.762                             0.763                        
## AIC                                      2903.784                          2890.559                        
## BIC                                      2957.525                          2954.071                        
## Num. obs.                                 978                               978                            
## Num. groups: B.ID                         163                               163                            
## Var: B.ID (Intercept)                       2.095                             1.775                        
## Var: B.ID W.X10                             0.011                             0.008                        
## Var: B.ID W.X01                             0.465                             0.439                        
## Cov: B.ID (Intercept) W.X10                -0.071                            -0.021                        
## Cov: B.ID (Intercept) W.X01                -0.394                            -0.290                        
## Cov: B.ID W.X10 W.X01                       0.071                             0.059                        
## Var: Residual                               0.608                             0.607                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X01 * BA.NeedForPersonalizationDueToAIV  5.61   1 169  .019 *  
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.195 (0.113)  1.724  .087 .   [-0.027, 0.417]
##  4.071 (Mean)                         0.006 (0.080)  0.069  .945     [-0.151, 0.163]
##  5.470 (+ SD)                        -0.184 (0.113) -1.626  .106     [-0.406, 0.038]
## ────────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.170 **                                      
##                                (0.122)                                            (0.369)                                        
## W.X10                           0.102                                              0.479 *                                       
##                                (0.197)                                            (0.219)                                        
## W.X10BA.ReflectionOnAIUseV      0.000                                             -0.093                                         
##                                (0.046)                                            (0.052)                                        
## W.X01                           0.041                                              0.640 *                                       
##                                (0.074)                                            (0.250)                                        
## BA.ReflectionOnAIUseV                                                              0.590 ***                                     
##                                                                                   (0.087)                                        
## W.X01:BA.ReflectionOnAIUseV                                                       -0.149 *                                       
##                                                                                   (0.059)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.155                                         
## Conditional R^2                 0.739                                              0.742                                         
## AIC                          2946.787                                           2917.085                                         
## BIC                          3000.527                                           2980.596                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.100                                              1.583                                         
## Var: B.ID W.X10                 0.001                                              0.003                                         
## Var: B.ID W.X01                 0.202                                              0.208                                         
## Cov: B.ID (Intercept) W.X10    -0.055                                              0.015                                         
## Cov: B.ID (Intercept) W.X01    -0.302                                             -0.190                                         
## Cov: B.ID W.X10 W.X01           0.008                                              0.022                                         
## Var: Residual                   0.681                                              0.677                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  6.28   1 182  .013 *  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.226 (0.104)  2.165  .032 *   [ 0.021, 0.430]
##  4.030 (Mean)             0.041 (0.074)  0.555  .579     [-0.103, 0.185]
##  5.272 (+ SD)            -0.144 (0.104) -1.380  .169     [-0.348, 0.060]
## ────────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.CapabilityV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.721 ***                    1.510 ***               
##                                (0.119)                      (0.331)                  
## W.X10                          -0.543 **                     0.029                   
##                                (0.185)                      (0.217)                  
## W.X10BA.CapabilityV             0.131 **                    -0.005                   
##                                (0.041)                      (0.049)                  
## W.X01                          -0.066                        0.339                   
##                                (0.069)                      (0.218)                  
## BA.CapabilityV                                               0.527 ***               
##                                                             (0.075)                  
## W.X01:BA.CapabilityV                                        -0.097 *                 
##                                                             (0.049)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.005                        0.185                   
## Conditional R^2                 0.700                        0.710                   
## AIC                          2981.414                     2949.446                   
## BIC                          3035.155                     3012.958                   
## Num. obs.                     978                          978                       
## Num. groups: B.ID             163                          163                       
## Var: B.ID (Intercept)           1.927                        1.402                   
## Var: B.ID W.X10                 0.032                        0.013                   
## Var: B.ID W.X01                 0.019                        0.019                   
## Cov: B.ID (Intercept) W.X10    -0.228                       -0.101                   
## Cov: B.ID (Intercept) W.X01    -0.069                        0.018                   
## Cov: B.ID W.X10 W.X01          -0.001                       -0.012                   
## Var: Residual                   0.755                        0.751                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  3.85   1 438  .050 .  
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.069 (0.097)  0.709  .479     [-0.122,  0.259]
##  4.196 (Mean)     -0.066 (0.069) -0.960  .338     [-0.201,  0.069]
##  5.593 (+ SD)     -0.201 (0.097) -2.066  .039 *   [-0.391, -0.010]
## ──────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.StructureV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X01", mods="BA.StructureV",covs=c("W.X10","W.X10BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X10, W.X10BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X10 + W.X10BA.StructureV + W.X01*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.474 ***                            1.953 ***                       
##                                (0.115)                              (0.367)                          
## W.X10                          -0.186                                0.185                           
##                                (0.199)                              (0.230)                          
## W.X10BA.StructureV              0.069                               -0.021                           
##                                (0.045)                              (0.053)                          
## W.X01                          -0.050                                0.413                           
##                                (0.068)                              (0.230)                          
## BA.StructureV                                                        0.369 ***                       
##                                                                     (0.085)                          
## W.X01:BA.StructureV                                                 -0.113 *                         
##                                                                     (0.053)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                0.071                           
## Conditional R^2                 0.698                                0.704                           
## AIC                          2978.584                             2970.918                           
## BIC                          3032.324                             3034.429                           
## Num. obs.                     978                                  978                               
## Num. groups: B.ID             163                                  163                               
## Var: B.ID (Intercept)           1.757                                1.554                           
## Var: B.ID W.X10                 0.000                                0.000                           
## Var: B.ID W.X01                 0.000                                0.002                           
## Cov: B.ID (Intercept) W.X10    -0.017                                0.025                           
## Cov: B.ID (Intercept) W.X01     0.008                                0.062                           
## Cov: B.ID W.X10 W.X01          -0.000                                0.001                           
## Var: Residual                   0.760                                0.756                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X01 * BA.StructureV  4.45   1 789  .035 *  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.094 (0.096)  0.971  .332     [-0.095,  0.283]
##  4.117 (Mean)    -0.050 (0.068) -0.738  .461     [-0.184,  0.083]
##  5.394 (+ SD)    -0.194 (0.096) -2.014  .044 *   [-0.383, -0.005]
## ─────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.474 ***                            1.804 ***                       
##                                          (0.114)                              (0.407)                          
## W.X10                                    -0.281                                0.158                           
##                                          (0.219)                              (0.254)                          
## W.X10BA.AIOnlineCommunicationSkillsV      0.089                               -0.014                           
##                                          (0.049)                              (0.057)                          
## W.X01                                    -0.050                                0.519 *                         
##                                          (0.068)                              (0.255)                          
## BA.AIOnlineCommunicationSkillsV                                                0.392 ***                       
##                                                                               (0.092)                          
## W.X01:BA.AIOnlineCommunicationSkillsV                                         -0.134 *                         
##                                                                               (0.058)                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.003                                0.068                           
## Conditional R^2                           0.698                                0.704                           
## AIC                                    2977.512                             2969.570                           
## BIC                                    3031.253                             3033.081                           
## Num. obs.                               978                                  978                               
## Num. groups: B.ID                       163                                  163                               
## Var: B.ID (Intercept)                     1.756                                1.562                           
## Var: B.ID W.X10                           0.000                                0.000                           
## Var: B.ID W.X01                           0.000                                0.003                           
## Cov: B.ID (Intercept) W.X10              -0.022                                0.021                           
## Cov: B.ID (Intercept) W.X01               0.009                                0.066                           
## Cov: B.ID W.X10 W.X01                    -0.000                                0.001                           
## Var: Residual                             0.759                                0.754                           
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  5.39   1 786  .020 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.108 (0.096)  1.121  .263     [-0.081,  0.297]
##  4.260 (Mean)                      -0.050 (0.068) -0.738  .461     [-0.184,  0.083]
##  5.444 (+ SD)                      -0.209 (0.096) -2.165  .031 *   [-0.398, -0.020]
## ───────────────────────────────────────────────────────────────────────────────────

7.2 Plot

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.StructureV$model.y, W.X01, BA.StructureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.WayOfQuestioningV$model.y, W.X01, BA.WayOfQuestioningV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.WayOfQuestioningV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.AffectiveRuminationVBA.ClarityOfInformationV$model.y, W.X01, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AdviceThinkingBasedSocialLearningVBA.AIInteractionQualityV$model.y, W.X01, BA.AIInteractionQualityV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIInteractionQualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.SelfReflectionForManipulationCheckVBA.ProblemSolvingConfidenceV$model.y, W.X01, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ProblemSolvingConfidenceV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.WayOfQuestioningV$model.y, W.X01, BA.WayOfQuestioningV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.WayOfQuestioningV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.NeedForPersonalizationDueToAIV$model.y, W.X01, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.NeedForPersonalizationDueToAIV$model.y, W.X01, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ReflectionOnAIUseV$model.y, W.X01, BA.ReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.CapabilityV$model.y, W.X01, BA.CapabilityV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.CapabilityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.StructureV$model.y, W.X01, BA.StructureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.AIOnlineCommunicationSkillsV$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

8 STUDY 2 FOR W.X01USING .10 AS STANDARD

8.1 Analysis

Sb10.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV=PROCESS(data2, y="WP.AIEnabledInnovationBehaviorV", x="W.X01", mods="BA.NeedForPersonalizationDueToAIV",covs=c("W.X10","W.X10BA.NeedForPersonalizationDueToAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledInnovationBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.NeedForPersonalizationDueToAIV
## - Covariates (C) : W.X10, W.X10BA.NeedForPersonalizationDueToAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledInnovationBehaviorV ~ W.X10 + W.X10BA.NeedForPersonalizationDueToAIV + W.X01*BA.NeedForPersonalizationDueToAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                          (1) WP.AIEnabledInnovationBehaviorV  (2) WP.AIEnabledInnovationBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                 3.474 ***                            1.908 ***                       
##                                            (0.115)                              (0.329)                          
## W.X10                                      -0.116                                0.256                           
##                                            (0.182)                              (0.210)                          
## W.X10BA.NeedForPersonalizationDueToAIV      0.053                               -0.039                           
##                                            (0.041)                              (0.049)                          
## W.X01                                      -0.050                                0.406                           
##                                            (0.068)                              (0.210)                          
## BA.NeedForPersonalizationDueToAIV                                                0.385 ***                       
##                                                                                 (0.076)                          
## W.X01:BA.NeedForPersonalizationDueToAIV                                         -0.112 *                         
##                                                                                 (0.049)                          
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                0.002                                0.089                           
## Conditional R^2                             0.698                                0.704                           
## AIC                                      2979.448                             2966.314                           
## BIC                                      3033.189                             3029.826                           
## Num. obs.                                 978                                  978                               
## Num. groups: B.ID                         163                                  163                               
## Var: B.ID (Intercept)                       1.757                                1.489                           
## Var: B.ID W.X10                             0.000                                0.001                           
## Var: B.ID W.X01                             0.000                                0.004                           
## Cov: B.ID (Intercept) W.X10                -0.015                                0.039                           
## Cov: B.ID (Intercept) W.X01                 0.008                                0.075                           
## Cov: B.ID W.X10 W.X01                      -0.000                                0.002                           
## Var: Residual                               0.760                                0.755                           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##                                               F df1 df2     p    
## ─────────────────────────────────────────────────────────────────
## W.X01 * BA.NeedForPersonalizationDueToAIV  5.29   1 779  .022 *  
## ─────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledInnovationBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────────
##  "BA.NeedForPersonalizationDueToAIV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────────
##  2.671 (- SD)                         0.107 (0.097)  1.105  .270     [-0.083,  0.296]
##  4.071 (Mean)                        -0.050 (0.068) -0.737  .461     [-0.184,  0.083]
##  5.470 (+ SD)                        -0.207 (0.097) -2.147  .032 *   [-0.396, -0.018]
## ─────────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.PositiveReflectionOnAIUseV",covs=c("W.X10","W.X10BA.PositiveReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.PositiveReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.PositiveReflectionOnAIUseV + W.X01*BA.PositiveReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.546 ***                                          1.300 ***                                     
##                                        (0.122)                                            (0.323)                                        
## W.X10                                  -0.017                                              0.360                                         
##                                        (0.176)                                            (0.196)                                        
## W.X10BA.PositiveReflectionOnAIUseV      0.030                                             -0.064                                         
##                                        (0.041)                                            (0.046)                                        
## W.X01                                   0.041                                              0.587 **                                      
##                                        (0.074)                                            (0.223)                                        
## BA.PositiveReflectionOnAIUseV                                                              0.556 ***                                     
##                                                                                           (0.076)                                        
## W.X01:BA.PositiveReflectionOnAIUseV                                                       -0.135 **                                      
##                                                                                           (0.052)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.001                                              0.185                                         
## Conditional R^2                         0.737                                              0.741                                         
## AIC                                  2946.624                                           2910.612                                         
## BIC                                  3000.364                                           2974.123                                         
## Num. obs.                             978                                                978                                             
## Num. groups: B.ID                     163                                                163                                             
## Var: B.ID (Intercept)                   2.097                                              1.503                                         
## Var: B.ID W.X10                         0.003                                              0.003                                         
## Var: B.ID W.X01                         0.199                                              0.203                                         
## Cov: B.ID (Intercept) W.X10            -0.084                                              0.003                                         
## Cov: B.ID (Intercept) W.X01            -0.299                                             -0.173                                         
## Cov: B.ID W.X10 W.X01                   0.012                                              0.023                                         
## Var: Residual                           0.682                                              0.678                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X01 * BA.PositiveReflectionOnAIUseV  6.72   1 181  .010 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  2.629 (- SD)                     0.232 (0.104)  2.226  .027 *   [ 0.028, 0.435]
##  4.037 (Mean)                     0.041 (0.074)  0.556  .579     [-0.103, 0.185]
##  5.444 (+ SD)                    -0.150 (0.104) -1.440  .152     [-0.353, 0.054]
## ────────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.531 ***                         1.718 ***                    
##                                          (0.121)                           (0.430)                       
## W.X10                                     0.224                             0.537 *                      
##                                          (0.209)                           (0.229)                       
## W.X10BA.AIOnlineCommunicationSkillsV     -0.039                            -0.112 *                      
##                                          (0.047)                           (0.052)                       
## W.X01                                     0.006                             0.699 *                      
##                                          (0.079)                           (0.299)                       
## BA.AIOnlineCommunicationSkillsV                                             0.425 ***                    
##                                                                            (0.097)                       
## W.X01:BA.AIOnlineCommunicationSkillsV                                      -0.163 *                      
##                                                                            (0.068)                       
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                             0.064                        
## Conditional R^2                           0.762                             0.764                        
## AIC                                    2904.298                          2894.791                        
## BIC                                    2958.039                          2958.302                        
## Num. obs.                               978                               978                            
## Num. groups: B.ID                       163                               163                            
## Var: B.ID (Intercept)                     2.089                             1.858                        
## Var: B.ID W.X10                           0.001                             0.008                        
## Var: B.ID W.X01                           0.408                             0.441                        
## Cov: B.ID (Intercept) W.X10              -0.044                            -0.016                        
## Cov: B.ID (Intercept) W.X01              -0.363                            -0.305                        
## Cov: B.ID W.X10 W.X01                     0.008                             0.057                        
## Var: Residual                             0.609                             0.605                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  5.79   1 170  .017 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.198 (0.113)  1.750  .082 .   [-0.024, 0.420]
##  4.260 (Mean)                       0.006 (0.080)  0.069  .945     [-0.152, 0.163]
##  5.444 (+ SD)                      -0.187 (0.113) -1.652  .100     [-0.409, 0.035]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.ClarityOfInformationV",covs=c("W.X10","W.X10BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X10, W.X10BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.ClarityOfInformationV + W.X01*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.413 ***                                     1.797 ***                                
##                                   (0.108)                                       (0.368)                                   
## W.X10                              0.261                                         0.616 *                                  
##                                   (0.232)                                       (0.250)                                   
## W.X10BA.ClarityOfInformationV     -0.051                                        -0.133 *                                  
##                                   (0.051)                                       (0.055)                                   
## W.X01                              0.039                                         0.586 *                                  
##                                   (0.070)                                       (0.251)                                   
## BA.ClarityOfInformationV                                                         0.371 ***                                
##                                                                                 (0.081)                                   
## W.X01:BA.ClarityOfInformationV                                                  -0.125 *                                  
##                                                                                 (0.055)                                   
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                                         0.060                                    
## Conditional R^2                    0.685                                         0.686                                    
## AIC                             2959.883                                      2950.710                                    
## BIC                             3013.623                                      3014.222                                    
## Num. obs.                        978                                           978                                        
## Num. groups: B.ID                163                                           163                                        
## Var: B.ID (Intercept)              1.553                                         1.351                                    
## Var: B.ID W.X10                    0.079                                         0.082                                    
## Var: B.ID W.X01                    0.095                                         0.090                                    
## Cov: B.ID (Intercept) W.X10       -0.012                                         0.025                                    
## Cov: B.ID (Intercept) W.X01       -0.091                                        -0.030                                    
## Cov: B.ID W.X10 W.X01             -0.084                                        -0.086                                    
## Var: Residual                      0.709                                         0.705                                    
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.ClarityOfInformationV  5.12   1 326  .024 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.197 (0.103)  1.913  .057 .   [-0.005, 0.400]
##  4.356 (Mean)                0.039 (0.073)  0.538  .591     [-0.104, 0.182]
##  5.617 (+ SD)               -0.119 (0.103) -1.152  .250     [-0.321, 0.083]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.StructureV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X01", mods="BA.StructureV",covs=c("W.X10","W.X10BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X10, W.X10BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X10 + W.X10BA.StructureV + W.X01*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.531 ***                         1.835 ***                    
##                                (0.121)                           (0.386)                       
## W.X10                           0.135                             0.387                        
##                                (0.185)                           (0.206)                       
## W.X10BA.StructureV             -0.019                            -0.080                        
##                                (0.043)                           (0.048)                       
## W.X01                           0.006                             0.474                        
##                                (0.081)                           (0.264)                       
## BA.StructureV                                                     0.412 ***                    
##                                                                  (0.089)                       
## W.X01:BA.StructureV                                              -0.114                        
##                                                                  (0.061)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                             0.079                        
## Conditional R^2                 0.763                             0.762                        
## AIC                          2903.433                          2895.798                        
## BIC                          2957.173                          2959.310                        
## Num. obs.                     978                               978                            
## Num. groups: B.ID             163                               163                            
## Var: B.ID (Intercept)           2.096                             1.823                        
## Var: B.ID W.X10                 0.010                             0.000                        
## Var: B.ID W.X01                 0.467                             0.391                        
## Cov: B.ID (Intercept) W.X10    -0.063                            -0.015                        
## Cov: B.ID (Intercept) W.X01    -0.395                            -0.289                        
## Cov: B.ID W.X10 W.X01           0.070                             0.002                        
## Var: Residual                   0.608                             0.610                        
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X01 * BA.StructureV  3.44   1 216  .065 .  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.151 (0.114)  1.323  .188     [-0.073, 0.375]
##  4.117 (Mean)     0.006 (0.081)  0.068  .946     [-0.153, 0.164]
##  5.394 (+ SD)    -0.140 (0.114) -1.226  .222     [-0.364, 0.084]
## ────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.NegativeReflectionOnAIUseV",covs=c("W.X10","W.X10BA.NegativeReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.NegativeReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.NegativeReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.NegativeReflectionOnAIUseV + W.X01*BA.NegativeReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.546 ***                                          1.960 ***                                     
##                                        (0.122)                                            (0.364)                                        
## W.X10                                   0.213                                              0.460 *                                       
##                                        (0.183)                                            (0.203)                                        
## W.X10BA.NegativeReflectionOnAIUseV     -0.027                                             -0.089                                         
##                                        (0.043)                                            (0.048)                                        
## W.X01                                   0.041                                              0.462 *                                       
##                                        (0.074)                                            (0.230)                                        
## BA.NegativeReflectionOnAIUseV                                                              0.394 ***                                     
##                                                                                           (0.086)                                        
## W.X01:BA.NegativeReflectionOnAIUseV                                                       -0.105                                         
##                                                                                           (0.054)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.001                                              0.077                                         
## Conditional R^2                         0.741                                              0.742                                         
## AIC                                  2946.579                                           2937.838                                         
## BIC                                  3000.320                                           3001.349                                         
## Num. obs.                             978                                                978                                             
## Num. groups: B.ID                     163                                                163                                             
## Var: B.ID (Intercept)                   2.102                                              1.834                                         
## Var: B.ID W.X10                         0.001                                              0.000                                         
## Var: B.ID W.X01                         0.205                                              0.193                                         
## Cov: B.ID (Intercept) W.X10            -0.039                                             -0.001                                         
## Cov: B.ID (Intercept) W.X01            -0.303                                             -0.234                                         
## Cov: B.ID W.X10 W.X01                   0.006                                              0.000                                         
## Var: Residual                           0.679                                              0.678                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X01 * BA.NegativeReflectionOnAIUseV  3.73   1 229  .055 .  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────────────
##  "BA.NegativeReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────────
##  2.675 (- SD)                     0.182 (0.105)  1.735  .085 .   [-0.024, 0.388]
##  4.022 (Mean)                     0.041 (0.074)  0.551  .582     [-0.105, 0.186]
##  5.370 (+ SD)                    -0.100 (0.105) -0.955  .341     [-0.306, 0.105]
## ────────────────────────────────────────────────────────────────────────────────
Sb10.WA.LearningFromErrorsVBB.AIUsageV=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BB.AIUsageV",covs=c("W.X10","W.X10BB.AIUsageV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BB.AIUsageV
## - Covariates (C) : W.X10, W.X10BB.AIUsageV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BB.AIUsageV + W.X01*BB.AIUsageV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.133 ***                   4.099 ***              
##                                (0.120)                     (0.263)                 
## W.X10                           0.095                       0.191                  
##                                (0.136)                     (0.151)                 
## W.X10BB.AIUsageV               -0.014                      -0.045                  
##                                (0.038)                     (0.043)                 
## W.X01                           0.029                       0.267                  
##                                (0.071)                     (0.155)                 
## BB.AIUsageV                                                 0.011                  
##                                                            (0.075)                 
## W.X01:BB.AIUsageV                                          -0.076                  
##                                                            (0.044)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.002                  
## Conditional R^2                 0.720                       0.722                  
## AIC                          2926.152                    2934.877                  
## BIC                          2979.619                    2998.066                  
## Num. obs.                     954                         954                      
## Num. groups: B.ID             159                         159                      
## Var: B.ID (Intercept)           1.908                       1.924                  
## Var: B.ID W.X10                 0.008                       0.009                  
## Var: B.ID W.X01                 0.054                       0.049                  
## Cov: B.ID (Intercept) W.X10    -0.031                      -0.035                  
## Cov: B.ID (Intercept) W.X01     0.014                       0.012                  
## Cov: B.ID W.X10 W.X01          -0.021                      -0.021                  
## Var: Residual                   0.747                       0.746                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X01 * BB.AIUsageV  2.98   1 256  .085 .  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────
##  "BB.AIUsageV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────
##  1.513 (- SD)   0.151 (0.101)  1.494  .136     [-0.047, 0.350]
##  3.109 (Mean)   0.029 (0.072)  0.407  .685     [-0.111, 0.169]
##  4.705 (+ SD)  -0.093 (0.101) -0.919  .359     [-0.291, 0.105]
## ──────────────────────────────────────────────────────────────
Sb10.WA.LearningFromErrorsVBA.AIInteractionQualityV=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.163 ***                   3.006 ***              
##                                   (0.118)                     (0.355)                 
## W.X10                              0.178                       0.132                  
##                                   (0.186)                     (0.211)                 
## W.X10BA.AIInteractionQualityV     -0.035                      -0.024                  
##                                   (0.043)                     (0.050)                 
## W.X01                              0.022                      -0.425 *                
##                                   (0.070)                     (0.214)                 
## BA.AIInteractionQualityV                                       0.289 ***              
##                                                               (0.084)                 
## W.X01:BA.AIInteractionQualityV                                 0.112 *                
##                                                               (0.051)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                       0.074                  
## Conditional R^2                    0.718                       0.718                  
## AIC                             2996.129                    2984.423                  
## BIC                             3049.870                    3047.935                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.904                       1.762                  
## Var: B.ID W.X10                    0.008                       0.009                  
## Var: B.ID W.X01                    0.040                       0.028                  
## Cov: B.ID (Intercept) W.X10       -0.033                      -0.043                  
## Cov: B.ID (Intercept) W.X01        0.008                      -0.059                  
## Cov: B.ID W.X10 W.X01             -0.017                      -0.013                  
## Var: Residual                      0.749                       0.748                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  4.88   1 316  .028 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.130 (0.098) -1.334  .183     [-0.322, 0.061]
##  4.006 (Mean)                0.022 (0.069)  0.322  .747     [-0.113, 0.157]
##  5.372 (+ SD)                0.175 (0.098)  1.790  .074 .   [-0.017, 0.366]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.731 ***                    2.810 ***               
##                                          (0.114)                      (0.421)                  
## W.X10                                     0.327                        0.632 *                 
##                                          (0.235)                      (0.266)                  
## W.X10BA.AIOnlineCommunicationSkillsV     -0.055                       -0.127 *                 
##                                          (0.053)                      (0.060)                  
## W.X01                                     0.055                        0.537 *                 
##                                          (0.072)                      (0.269)                  
## BA.AIOnlineCommunicationSkillsV                                        0.216 *                 
##                                                                       (0.095)                  
## W.X01:BA.AIOnlineCommunicationSkillsV                                 -0.113                   
##                                                                       (0.061)                  
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                        0.013                   
## Conditional R^2                           0.681                        0.683                   
## AIC                                    3044.095                     3048.114                   
## BIC                                    3097.835                     3111.626                   
## Num. obs.                               978                          978                       
## Num. groups: B.ID                       163                          163                       
## Var: B.ID (Intercept)                     1.715                        1.666                   
## Var: B.ID W.X10                           0.026                        0.027                   
## Var: B.ID W.X01                           0.046                        0.045                   
## Cov: B.ID (Intercept) W.X10              -0.039                       -0.026                   
## Cov: B.ID (Intercept) W.X01               0.002                        0.027                   
## Cov: B.ID W.X10 W.X01                    -0.034                       -0.035                   
## Var: Residual                             0.802                        0.800                   
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  3.47   1 367  .063 .  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.189 (0.102)  1.853  .065 .   [-0.011, 0.388]
##  4.260 (Mean)                       0.055 (0.072)  0.759  .449     [-0.086, 0.196]
##  5.444 (+ SD)                      -0.080 (0.102) -0.781  .435     [-0.279, 0.120]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X01", mods="BA.ClarityOfInformationV",covs=c("W.X10","W.X10BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X10, W.X10BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X10 + W.X10BA.ClarityOfInformationV + W.X01*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.531 ***                         2.018 ***                    
##                                   (0.121)                           (0.420)                       
## W.X10                              0.180                             0.482 *                      
##                                   (0.198)                           (0.220)                       
## W.X10BA.ClarityOfInformationV     -0.028                            -0.097 *                      
##                                   (0.043)                           (0.048)                       
## W.X01                              0.006                             0.683 *                      
##                                   (0.081)                           (0.281)                       
## BA.ClarityOfInformationV                                             0.347 ***                    
##                                                                     (0.093)                       
## W.X01:BA.ClarityOfInformationV                                      -0.156 *                      
##                                                                     (0.062)                       
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                             0.046                        
## Conditional R^2                    0.763                             0.763                        
## AIC                             2903.190                          2900.666                        
## BIC                             2956.931                          2964.178                        
## Num. obs.                        978                               978                            
## Num. groups: B.ID                163                               163                            
## Var: B.ID (Intercept)              2.097                             1.912                        
## Var: B.ID W.X10                    0.010                             0.000                        
## Var: B.ID W.X01                    0.468                             0.383                        
## Cov: B.ID (Intercept) W.X10       -0.061                            -0.019                        
## Cov: B.ID (Intercept) W.X01       -0.396                            -0.285                        
## Cov: B.ID W.X10 W.X01              0.068                             0.003                        
## Var: Residual                      0.607                             0.608                        
## ──────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.ClarityOfInformationV  6.32   1 205  .013 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.202 (0.113)  1.781  .077 .   [-0.020, 0.424]
##  4.356 (Mean)                0.006 (0.080)  0.069  .945     [-0.151, 0.162]
##  5.617 (+ SD)               -0.191 (0.113) -1.683  .094 .   [-0.413, 0.031]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WP.LearningBehaviorVBB.AITechnologyAnxietyV=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BB.AITechnologyAnxietyV",covs=c("W.X10","W.X10BB.AITechnologyAnxietyV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BB.AITechnologyAnxietyV
## - Covariates (C) : W.X10, W.X10BB.AITechnologyAnxietyV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BB.AITechnologyAnxietyV + W.X01*BB.AITechnologyAnxietyV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                                (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                       3.516 ***                 3.311 ***            
##                                  (0.124)                   (0.272)               
## W.X10                            -0.042                     0.087                
##                                  (0.136)                   (0.152)               
## W.X10BB.AITechnologyAnxietyV      0.062                     0.017                
##                                  (0.040)                   (0.047)               
## W.X01                             0.021                     0.278                
##                                  (0.070)                   (0.153)               
## BB.AITechnologyAnxietyV                                     0.071                
##                                                            (0.084)               
## W.X01:BB.AITechnologyAnxietyV                              -0.089                
##                                                            (0.047)               
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                      0.002                     0.005                
## Conditional R^2                   0.727                     0.729                
## AIC                            2934.346                  2942.249                
## BIC                            2987.813                  3005.438                
## Num. obs.                       954                       954                    
## Num. groups: B.ID               159                       159                    
## Var: B.ID (Intercept)             2.059                     2.066                
## Var: B.ID W.X10                   0.000                     0.000                
## Var: B.ID W.X01                   0.018                     0.012                
## Cov: B.ID (Intercept) W.X10       0.007                     0.008                
## Cov: B.ID (Intercept) W.X01      -0.064                    -0.057                
## Cov: B.ID W.X10 W.X01            -0.000                    -0.000                
## Var: Residual                     0.762                     0.761                
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────
##                                     F df1 df2     p    
## ───────────────────────────────────────────────────────
## W.X01 * BB.AITechnologyAnxietyV  3.56   1 255  .060 .  
## ───────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BB.AITechnologyAnxietyV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  1.416 (- SD)               0.153 (0.099)  1.548  .122     [-0.041, 0.346]
##  2.899 (Mean)               0.021 (0.070)  0.304  .761     [-0.115, 0.158]
##  4.383 (+ SD)              -0.110 (0.099) -1.118  .264     [-0.304, 0.083]
## ──────────────────────────────────────────────────────────────────────────
Sb10.WP.PerceivedWorkGrowthVBB.TrustInAIV=PROCESS(data2, y="WP.PerceivedWorkGrowthV", x="W.X01", mods="BB.TrustInAIV",covs=c("W.X10","W.X10BB.TrustInAIV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.PerceivedWorkGrowthV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BB.TrustInAIV
## - Covariates (C) : W.X10, W.X10BB.TrustInAIV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.PerceivedWorkGrowthV ~ W.X10 + W.X10BB.TrustInAIV + W.X01*BB.TrustInAIV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.PerceivedWorkGrowthV  (2) WP.PerceivedWorkGrowthV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.894 ***                    3.056 ***               
##                                (0.118)                      (0.363)                  
## W.X10                          -0.223                       -0.207                   
##                                (0.186)                      (0.207)                  
## W.X10BB.TrustInAIV              0.095 *                      0.090                   
##                                (0.047)                      (0.053)                  
## W.X01                           0.060                       -0.159                   
##                                (0.078)                      (0.240)                  
## BB.TrustInAIV                                                0.227 *                 
##                                                             (0.093)                  
## W.X01:BB.TrustInAIV                                          0.059                   
##                                                             (0.062)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                        0.048                   
## Conditional R^2                 0.725                        0.729                   
## AIC                          2900.411                     2901.098                   
## BIC                          2953.878                     2964.287                   
## Num. obs.                     954                          954                       
## Num. groups: B.ID             159                          159                       
## Var: B.ID (Intercept)           1.865                        1.794                   
## Var: B.ID W.X10                 0.001                        0.004                   
## Var: B.ID W.X01                 0.266                        0.237                   
## Cov: B.ID (Intercept) W.X10    -0.032                       -0.029                   
## Cov: B.ID (Intercept) W.X01    -0.159                       -0.165                   
## Cov: B.ID W.X10 W.X01           0.003                       -0.027                   
## Var: Residual                   0.695                        0.694                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 954 (30 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.PerceivedWorkGrowthV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X01 * BB.TrustInAIV  0.93   1 190  .336    
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.PerceivedWorkGrowthV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BB.TrustInAIV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.445 (- SD)    -0.014 (0.110) -0.129  .898     [-0.229, 0.201]
##  3.689 (Mean)     0.060 (0.078)  0.769  .443     [-0.092, 0.212]
##  4.932 (+ SD)     0.134 (0.110)  1.216  .225     [-0.082, 0.349]
## ────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.546 ***                                          1.773 ***                                     
##                                          (0.122)                                            (0.435)                                        
## W.X10                                    -0.082                                              0.322                                         
##                                          (0.213)                                            (0.241)                                        
## W.X10BA.AIOnlineCommunicationSkillsV      0.043                                             -0.051                                         
##                                          (0.048)                                            (0.055)                                        
## W.X01                                     0.041                                              0.785 **                                      
##                                          (0.075)                                            (0.270)                                        
## BA.AIOnlineCommunicationSkillsV                                                              0.416 ***                                     
##                                                                                             (0.098)                                        
## W.X01:BA.AIOnlineCommunicationSkillsV                                                       -0.175 **                                      
##                                                                                             (0.061)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                                              0.066                                         
## Conditional R^2                           0.738                                              0.741                                         
## AIC                                    2945.554                                           2938.140                                         
## BIC                                    2999.294                                           3001.651                                         
## Num. obs.                               978                                                978                                             
## Num. groups: B.ID                       163                                                163                                             
## Var: B.ID (Intercept)                     2.102                                              1.871                                         
## Var: B.ID W.X10                           0.007                                              0.000                                         
## Var: B.ID W.X01                           0.226                                              0.170                                         
## Cov: B.ID (Intercept) W.X10              -0.082                                             -0.029                                         
## Cov: B.ID (Intercept) W.X01              -0.314                                             -0.206                                         
## Cov: B.ID W.X10 W.X01                     0.038                                              0.003                                         
## Var: Residual                             0.681                                              0.680                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  8.19   1 237  .005 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.248 (0.104)  2.392  .018 *   [ 0.045, 0.451]
##  4.260 (Mean)                       0.041 (0.073)  0.559  .577     [-0.103, 0.184]
##  5.444 (+ SD)                      -0.166 (0.104) -1.602  .111     [-0.369, 0.037]
## ──────────────────────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.StructureV",covs=c("W.X10","W.X10BA.StructureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.StructureV
## - Covariates (C) : W.X10, W.X10BA.StructureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.StructureV + W.X01*BA.StructureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.879 ***                                     
##                                (0.122)                                            (0.391)                                        
## W.X10                          -0.093                                              0.234                                         
##                                (0.195)                                            (0.219)                                        
## W.X10BA.StructureV              0.048                                             -0.032                                         
##                                (0.045)                                            (0.051)                                        
## W.X01                           0.041                                              0.590 *                                       
##                                (0.073)                                            (0.249)                                        
## BA.StructureV                                                                      0.405 ***                                     
##                                                                                   (0.091)                                        
## W.X01:BA.StructureV                                                               -0.133 *                                       
##                                                                                   (0.058)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.079                                         
## Conditional R^2                 0.737                                              0.741                                         
## AIC                          2945.819                                           2937.265                                         
## BIC                          2999.559                                           3000.777                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.097                                              1.850                                         
## Var: B.ID W.X10                 0.003                                              0.004                                         
## Var: B.ID W.X01                 0.197                                              0.207                                         
## Cov: B.ID (Intercept) W.X10    -0.082                                             -0.042                                         
## Cov: B.ID (Intercept) W.X01    -0.297                                             -0.232                                         
## Cov: B.ID W.X10 W.X01           0.012                                              0.029                                         
## Var: Residual                   0.682                                              0.679                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## W.X01 * BA.StructureV  5.34   1 180  .022 *  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.StructureV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.839 (- SD)     0.211 (0.104)  2.026  .044 *   [ 0.007, 0.416]
##  4.117 (Mean)     0.041 (0.074)  0.555  .580     [-0.104, 0.185]
##  5.394 (+ SD)    -0.129 (0.104) -1.242  .216     [-0.334, 0.075]
## ────────────────────────────────────────────────────────────────
Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.ClarityOfInformationV",covs=c("W.X10","W.X10BA.ClarityOfInformationV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ClarityOfInformationV
## - Covariates (C) : W.X10, W.X10BA.ClarityOfInformationV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.ClarityOfInformationV + W.X01*BA.ClarityOfInformationV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.546 ***                                          2.009 ***                                     
##                                   (0.122)                                            (0.424)                                        
## W.X10                             -0.057                                              0.306                                         
##                                   (0.208)                                            (0.233)                                        
## W.X10BA.ClarityOfInformationV      0.037                                             -0.047                                         
##                                   (0.045)                                            (0.051)                                        
## W.X01                              0.041                                              0.747 **                                      
##                                   (0.073)                                            (0.263)                                        
## BA.ClarityOfInformationV                                                              0.353 ***                                     
##                                                                                      (0.093)                                        
## W.X01:BA.ClarityOfInformationV                                                       -0.162 **                                      
##                                                                                      (0.058)                                        
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                                              0.052                                         
## Conditional R^2                    0.738                                              0.741                                         
## AIC                             2946.203                                           2941.190                                         
## BIC                             2999.944                                           3004.702                                         
## Num. obs.                        978                                                978                                             
## Num. groups: B.ID                163                                                163                                             
## Var: B.ID (Intercept)              2.097                                              1.921                                         
## Var: B.ID W.X10                    0.002                                              0.003                                         
## Var: B.ID W.X01                    0.196                                              0.195                                         
## Cov: B.ID (Intercept) W.X10       -0.071                                             -0.038                                         
## Cov: B.ID (Intercept) W.X01       -0.297                                             -0.230                                         
## Cov: B.ID W.X10 W.X01              0.010                                              0.026                                         
## Var: Residual                      0.682                                              0.679                                         
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.ClarityOfInformationV  7.78   1 182  .006 ** 
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.ClarityOfInformationV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  3.095 (- SD)                0.245 (0.104)  2.368  .019 *   [ 0.042, 0.448]
##  4.356 (Mean)                0.041 (0.073)  0.559  .577     [-0.103, 0.184]
##  5.617 (+ SD)               -0.163 (0.104) -1.578  .116     [-0.366, 0.040]
## ───────────────────────────────────────────────────────────────────────────
Sb10.WA.ErrorStrainVBA.EffectivenessV=PROCESS(data2, y="WA.ErrorStrainV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ErrorStrainV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ErrorStrainV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────
##                              (1) WA.ErrorStrainV  (2) WA.ErrorStrainV
## ─────────────────────────────────────────────────────────────────────
## (Intercept)                     3.512 ***            2.342 ***       
##                                (0.117)              (0.353)          
## W.X10                          -0.097                0.286           
##                                (0.206)              (0.242)          
## W.X10BA.EffectivenessV          0.031               -0.065           
##                                (0.048)              (0.058)          
## W.X01                          -0.175 *              0.282           
##                                (0.078)              (0.242)          
## BA.EffectivenessV                                    0.294 ***       
##                                                     (0.084)          
## W.X01:BA.EffectivenessV                             -0.115 *         
##                                                     (0.058)          
## ─────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                0.044           
## Conditional R^2                 0.611                0.615           
## AIC                          3162.994             3162.018           
## BIC                          3216.735             3225.529           
## Num. obs.                     978                  978               
## Num. groups: B.ID             163                  163               
## Var: B.ID (Intercept)           1.740                1.600           
## Var: B.ID W.X10                 0.015                0.009           
## Var: B.ID W.X01                 0.018                0.010           
## Cov: B.ID (Intercept) W.X10    -0.161               -0.120           
## Cov: B.ID (Intercept) W.X01    -0.179               -0.128           
## Cov: B.ID W.X10 W.X01           0.017                0.010           
## Var: Residual                   0.974                0.972           
## ─────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ErrorStrainV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  3.99   1 742  .046 *  
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ErrorStrainV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.020 (0.110) -0.186  .852     [-0.236,  0.195]
##  3.982 (Mean)        -0.175 (0.078) -2.261  .024 *   [-0.328, -0.023]
##  5.329 (+ SD)        -0.330 (0.110) -3.010  .003 **  [-0.546, -0.115]
## ─────────────────────────────────────────────────────────────────────
Sb10.WP.VoiceForSystemImprovmentVBA.QualityV=PROCESS(data2, y="WP.VoiceForSystemImprovmentV", x="W.X01", mods="BA.QualityV",covs=c("W.X10","W.X10BA.QualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.VoiceForSystemImprovmentV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.QualityV
## - Covariates (C) : W.X10, W.X10BA.QualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.VoiceForSystemImprovmentV ~ W.X10 + W.X10BA.QualityV + W.X01*BA.QualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.VoiceForSystemImprovmentV  (2) WP.VoiceForSystemImprovmentV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.531 ***                         1.257 ***                    
##                                (0.121)                           (0.335)                       
## W.X10                          -0.148                             0.216                        
##                                (0.173)                           (0.195)                       
## W.X10BA.QualityV                0.050                            -0.038                        
##                                (0.039)                           (0.045)                       
## W.X01                           0.006                             0.529 *                      
##                                (0.081)                           (0.254)                       
## BA.QualityV                                                       0.555 ***                    
##                                                                  (0.078)                       
## W.X01:BA.QualityV                                                -0.128 *                      
##                                                                  (0.059)                       
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                             0.185                        
## Conditional R^2                 0.758                             0.762                        
## AIC                          2902.497                          2868.548                        
## BIC                          2956.237                          2932.059                        
## Num. obs.                     978                               978                            
## Num. groups: B.ID             163                               163                            
## Var: B.ID (Intercept)           2.091                             1.528                        
## Var: B.ID W.X10                 0.015                             0.010                        
## Var: B.ID W.X01                 0.461                             0.441                        
## Cov: B.ID (Intercept) W.X10    -0.121                            -0.036                        
## Cov: B.ID (Intercept) W.X01    -0.391                            -0.264                        
## Cov: B.ID W.X10 W.X01           0.079                             0.065                        
## Var: Residual                   0.610                             0.608                        
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.VoiceForSystemImprovmentV" (Y)
## ───────────────────────────────────────────
##                         F df1 df2     p    
## ───────────────────────────────────────────
## W.X01 * BA.QualityV  4.74   1 169  .031 *  
## ───────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.VoiceForSystemImprovmentV" (Y)
## ──────────────────────────────────────────────────────────────
##  "BA.QualityV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────
##  2.728 (- SD)   0.180 (0.114)  1.589  .114     [-0.042, 0.403]
##  4.094 (Mean)   0.006 (0.080)  0.069  .945     [-0.152, 0.163]
##  5.460 (+ SD)  -0.169 (0.114) -1.491  .138     [-0.392, 0.053]
## ──────────────────────────────────────────────────────────────
Sb10.WP.SocialLearningVBA.ProblemSolvingConfidenceV=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.ProblemSolvingConfidenceV",covs=c("W.X10","W.X10BA.ProblemSolvingConfidenceV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ProblemSolvingConfidenceV
## - Covariates (C) : W.X10, W.X10BA.ProblemSolvingConfidenceV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.ProblemSolvingConfidenceV + W.X01*BA.ProblemSolvingConfidenceV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                     (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                            3.656 ***               0.875              
##                                       (0.109)                 (0.455)             
## W.X10                                 -1.222 ***              -0.694 *            
##                                       (0.269)                 (0.317)             
## W.X10BA.ProblemSolvingConfidenceV      0.306 ***               0.185 **           
##                                       (0.059)                 (0.071)             
## W.X01                                  0.073                   0.011              
##                                       (0.068)                 (0.315)             
## BA.ProblemSolvingConfidenceV                                   0.636 ***          
##                                                               (0.101)             
## W.X01:BA.ProblemSolvingConfidenceV                             0.014              
##                                                               (0.070)             
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                           0.014                   0.198              
## Conditional R^2                        0.675                   0.689              
## AIC                                 2945.376                2915.817              
## BIC                                 2999.116                2979.329              
## Num. obs.                            978                     978                  
## Num. groups: B.ID                    163                     163                  
## Var: B.ID (Intercept)                  1.569                   1.198              
## Var: B.ID W.X10                        0.032                   0.021              
## Var: B.ID W.X01                        0.014                   0.014              
## Cov: B.ID (Intercept) W.X10           -0.145                  -0.076              
## Cov: B.ID (Intercept) W.X01            0.022                   0.013              
## Cov: B.ID W.X10 W.X01                 -0.018                  -0.016              
## Var: Residual                          0.739                   0.740              
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────
##                                          F df1 df2     p    
## ────────────────────────────────────────────────────────────
## W.X01 * BA.ProblemSolvingConfidenceV  0.04   1 531  .840    
## ────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────────
##  "BA.ProblemSolvingConfidenceV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────
##  3.409 (- SD)                    0.059 (0.096) 0.615  .538     [-0.129, 0.247]
##  4.376 (Mean)                    0.073 (0.068) 1.072  .284     [-0.060, 0.206]
##  5.343 (+ SD)                    0.087 (0.096) 0.901  .368     [-0.102, 0.275]
## ──────────────────────────────────────────────────────────────────────────────
Sb10.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV=PROCESS(data2, y="WP.AIUsageForFacilitatingWorkV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIUsageForFacilitatingWorkV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIUsageForFacilitatingWorkV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIUsageForFacilitatingWorkV  (2) WP.AIUsageForFacilitatingWorkV
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     2.717 ***                           4.383 ***                      
##                                (0.129)                             (0.399)                         
## W.X10                           0.325                              -0.060                          
##                                (0.204)                             (0.225)                         
## W.X10BA.PersonalControlV       -0.050                               0.047                          
##                                (0.049)                             (0.054)                         
## W.X01                           0.026                              -0.394                          
##                                (0.071)                             (0.237)                         
## BA.PersonalControlV                                                -0.421 ***                      
##                                                                    (0.096)                         
## W.X01:BA.PersonalControlV                                           0.106                          
##                                                                    (0.057)                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                               0.077                          
## Conditional R^2                 0.742                               0.740                          
## AIC                          3046.342                            3040.853                          
## BIC                          3100.083                            3104.365                          
## Num. obs.                     978                                 978                              
## Num. groups: B.ID             163                                 163                              
## Var: B.ID (Intercept)           2.322                               2.054                          
## Var: B.ID W.X10                 0.057                               0.007                          
## Var: B.ID W.X01                 0.061                               0.094                          
## Cov: B.ID (Intercept) W.X10    -0.177                              -0.117                          
## Cov: B.ID (Intercept) W.X01    -0.093                              -0.055                          
## Cov: B.ID W.X10 W.X01          -0.043                               0.003                          
## Var: Residual                   0.759                               0.772                          
## ───────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIUsageForFacilitatingWorkV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  3.45   1 253  .064 .  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIUsageForFacilitatingWorkV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.110 (0.100) -1.100  .272     [-0.306, 0.086]
##  3.954 (Mean)           0.026 (0.071)  0.362  .718     [-0.113, 0.164]
##  5.230 (+ SD)           0.161 (0.100)  1.612  .108     [-0.035, 0.357]
## ──────────────────────────────────────────────────────────────────────
Sb10.WP.AIEnabledCreativityVBA.PersonalControlV=PROCESS(data2, y="WP.AIEnabledCreativityV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AIEnabledCreativityV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AIEnabledCreativityV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AIEnabledCreativityV  (2) WP.AIEnabledCreativityV
## ─────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.721 ***                    5.761 ***               
##                                (0.119)                      (0.351)                  
## W.X10                          -0.164                       -0.455 *                 
##                                (0.192)                      (0.222)                  
## W.X10BA.PersonalControlV        0.043                        0.117 *                 
##                                (0.045)                      (0.053)                  
## W.X01                          -0.066                       -0.218                   
##                                (0.069)                      (0.227)                  
## BA.PersonalControlV                                         -0.516 ***               
##                                                             (0.085)                  
## W.X01:BA.PersonalControlV                                    0.038                   
##                                                             (0.055)                  
## ─────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                        0.137                   
## Conditional R^2                 0.710                        0.709                   
## AIC                          2988.642                     2964.143                   
## BIC                          3042.383                     3027.655                   
## Num. obs.                     978                          978                       
## Num. groups: B.ID             163                          163                       
## Var: B.ID (Intercept)           1.938                        1.516                   
## Var: B.ID W.X10                 0.003                        0.000                   
## Var: B.ID W.X01                 0.032                        0.034                   
## Cov: B.ID (Intercept) W.X10    -0.074                       -0.016                   
## Cov: B.ID (Intercept) W.X01    -0.085                       -0.056                   
## Cov: B.ID W.X10 W.X01           0.003                        0.001                   
## Var: Residual                   0.755                        0.753                   
## ─────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AIEnabledCreativityV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  0.49   1 267  .483    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AIEnabledCreativityV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.115 (0.098) -1.168  .244     [-0.308, 0.078]
##  3.954 (Mean)          -0.066 (0.070) -0.948  .344     [-0.202, 0.070]
##  5.230 (+ SD)          -0.017 (0.098) -0.173  .863     [-0.210, 0.176]
## ──────────────────────────────────────────────────────────────────────
Sb10.WP.SocialLearningVBA.PositiveReflectionOnAIUseV=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.PositiveReflectionOnAIUseV",covs=c("W.X10","W.X10BA.PositiveReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PositiveReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.PositiveReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.PositiveReflectionOnAIUseV + W.X01*BA.PositiveReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.656 ***               1.971 ***          
##                                        (0.109)                 (0.301)             
## W.X10                                  -0.746 ***              -0.431 *            
##                                        (0.178)                 (0.207)             
## W.X10BA.PositiveReflectionOnAIUseV      0.213 ***               0.135 **           
##                                        (0.041)                 (0.049)             
## W.X01                                   0.073                   0.033              
##                                        (0.068)                 (0.207)             
## BA.PositiveReflectionOnAIUseV                                   0.417 ***          
##                                                                (0.070)             
## W.X01:BA.PositiveReflectionOnAIUseV                             0.010              
##                                                                (0.048)             
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.014                   0.185              
## Conditional R^2                         0.675                   0.689              
## AIC                                  2944.987                2920.719              
## BIC                                  2998.728                2984.230              
## Num. obs.                             978                     978                  
## Num. groups: B.ID                     163                     163                  
## Var: B.ID (Intercept)                   1.569                   1.232              
## Var: B.ID W.X10                         0.029                   0.020              
## Var: B.ID W.X01                         0.014                   0.014              
## Cov: B.ID (Intercept) W.X10            -0.141                  -0.079              
## Cov: B.ID (Intercept) W.X01             0.021                   0.013              
## Cov: B.ID W.X10 W.X01                  -0.017                  -0.015              
## Var: Residual                           0.739                   0.740              
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X01 * BA.PositiveReflectionOnAIUseV  0.04   1 534  .838    
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────────
##  "BA.PositiveReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────────
##  2.629 (- SD)                     0.059 (0.096) 0.613  .540     [-0.130, 0.247]
##  4.037 (Mean)                     0.073 (0.068) 1.072  .284     [-0.060, 0.206]
##  5.444 (+ SD)                     0.087 (0.096) 0.902  .367     [-0.102, 0.275]
## ───────────────────────────────────────────────────────────────────────────────
Sb10.WP.FamilyMemberUndermingVBA.AIServiceFailureV=PROCESS(data2, y="WP.FamilyMemberUndermingV", x="W.X01", mods="BA.AIServiceFailureV",covs=c("W.X10","W.X10BA.AIServiceFailureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberUndermingV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : W.X10, W.X10BA.AIServiceFailureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberUndermingV ~ W.X10 + W.X10BA.AIServiceFailureV + W.X01*BA.AIServiceFailureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FamilyMemberUndermingV  (2) WP.FamilyMemberUndermingV
## ─────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     1.525 ***                      0.548 *                   
##                                (0.086)                        (0.229)                    
## W.X10                           0.174                          0.333 *                   
##                                (0.119)                        (0.141)                    
## W.X10BA.AIServiceFailureV      -0.054                         -0.099 **                  
##                                (0.030)                        (0.036)                    
## W.X01                          -0.019                         -0.045                     
##                                (0.050)                        (0.140)                    
## BA.AIServiceFailureV                                           0.270 ***                 
##                                                               (0.059)                    
## W.X01:BA.AIServiceFailureV                                     0.007                     
##                                                               (0.036)                    
## ─────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                          0.085                     
## Conditional R^2                 0.700                          0.698                     
## AIC                          2355.336                       2345.317                     
## BIC                          2409.076                       2408.829                     
## Num. obs.                     978                            978                         
## Num. groups: B.ID             163                            163                         
## Var: B.ID (Intercept)           1.010                          0.877                     
## Var: B.ID W.X10                 0.010                          0.007                     
## Var: B.ID W.X01                 0.000                          0.001                     
## Cov: B.ID (Intercept) W.X10    -0.101                         -0.080                     
## Cov: B.ID (Intercept) W.X01    -0.020                         -0.024                     
## Cov: B.ID W.X10 W.X01           0.002                          0.002                     
## Var: Residual                   0.400                          0.400                     
## ─────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberUndermingV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X01 * BA.AIServiceFailureV  0.04   1 800  .843    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.FamilyMemberUndermingV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.249 (- SD)           -0.029 (0.070) -0.414  .679     [-0.166, 0.108]
##  3.626 (Mean)           -0.019 (0.050) -0.387  .699     [-0.116, 0.078]
##  5.002 (+ SD)           -0.009 (0.070) -0.133  .894     [-0.147, 0.128]
## ───────────────────────────────────────────────────────────────────────
Sb10.WP.FamilyMemberConflictVBA.AIServiceFailureV=PROCESS(data2, y="WP.FamilyMemberConflictV", x="W.X01", mods="BA.AIServiceFailureV",covs=c("W.X10","W.X10BA.AIServiceFailureV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FamilyMemberConflictV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIServiceFailureV
## - Covariates (C) : W.X10, W.X10BA.AIServiceFailureV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FamilyMemberConflictV ~ W.X10 + W.X10BA.AIServiceFailureV + W.X01*BA.AIServiceFailureV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FamilyMemberConflictV  (2) WP.FamilyMemberConflictV
## ───────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     1.475 ***                     0.504 *                  
##                                (0.083)                       (0.221)                   
## W.X10                           0.177                         0.331 *                  
##                                (0.110)                       (0.130)                   
## W.X10BA.AIServiceFailureV      -0.062 *                      -0.104 **                 
##                                (0.028)                       (0.033)                   
## W.X01                          -0.015                        -0.018                    
##                                (0.046)                       (0.129)                   
## BA.AIServiceFailureV                                          0.268 ***                
##                                                              (0.057)                   
## W.X01:BA.AIServiceFailureV                                    0.001                    
##                                                              (0.033)                   
## ───────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                         0.088                    
## Conditional R^2                 0.726                         0.723                    
## AIC                          2220.437                      2210.493                    
## BIC                          2274.178                      2274.005                    
## Num. obs.                     978                           978                        
## Num. groups: B.ID             163                           163                        
## Var: B.ID (Intercept)           0.959                         0.828                    
## Var: B.ID W.X10                 0.007                         0.005                    
## Var: B.ID W.X01                 0.000                         0.000                    
## Cov: B.ID (Intercept) W.X10    -0.083                        -0.062                    
## Cov: B.ID (Intercept) W.X01    -0.004                        -0.005                    
## Cov: B.ID W.X10 W.X01           0.000                         0.000                    
## Var: Residual                   0.341                         0.342                    
## ───────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FamilyMemberConflictV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X01 * BA.AIServiceFailureV  0.00   1 810  .982    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.FamilyMemberConflictV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.AIServiceFailureV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.249 (- SD)           -0.016 (0.065) -0.253  .801     [-0.143, 0.111]
##  3.626 (Mean)           -0.015 (0.046) -0.335  .738     [-0.105, 0.074]
##  5.002 (+ SD)           -0.014 (0.065) -0.221  .825     [-0.141, 0.113]
## ───────────────────────────────────────────────────────────────────────
Sb10.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV=PROCESS(data2, y="WP.FeedbackSeekingForSystemImprovementV", x="W.X01", mods="BA.AnthropomorphismV",covs=c("W.X10","W.X10BA.AnthropomorphismV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.FeedbackSeekingForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AnthropomorphismV
## - Covariates (C) : W.X10, W.X10BA.AnthropomorphismV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.FeedbackSeekingForSystemImprovementV ~ W.X10 + W.X10BA.AnthropomorphismV + W.X01*BA.AnthropomorphismV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.FeedbackSeekingForSystemImprovementV  (2) WP.FeedbackSeekingForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.188 ***                                    1.988 ***                               
##                                (0.117)                                      (0.242)                                  
## W.X10                          -0.095                                        0.227                                   
##                                (0.132)                                      (0.152)                                  
## W.X10BA.AnthropomorphismV       0.069                                       -0.042                                   
##                                (0.039)                                      (0.047)                                  
## W.X01                           0.057                                        0.333 *                                 
##                                (0.068)                                      (0.152)                                  
## BA.AnthropomorphismV                                                         0.415 ***                               
##                                                                             (0.075)                                  
## W.X01:BA.AnthropomorphismV                                                  -0.096 *                                 
##                                                                             (0.047)                                  
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                        0.114                                   
## Conditional R^2                 0.700                                        0.706                                   
## AIC                          2957.219                                     2940.496                                   
## BIC                          3010.960                                     3004.007                                   
## Num. obs.                     978                                          978                                       
## Num. groups: B.ID             163                                          163                                       
## Var: B.ID (Intercept)           1.859                                        1.522                                   
## Var: B.ID W.X10                 0.018                                        0.006                                   
## Var: B.ID W.X01                 0.007                                        0.007                                   
## Cov: B.ID (Intercept) W.X10    -0.181                                       -0.099                                   
## Cov: B.ID (Intercept) W.X01    -0.031                                        0.038                                   
## Cov: B.ID W.X10 W.X01           0.003                                       -0.002                                   
## Var: Residual                   0.741                                        0.737                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## W.X01 * BA.AnthropomorphismV  4.13   1 265  .043 *  
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.FeedbackSeekingForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.AnthropomorphismV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  1.457 (- SD)            0.194 (0.096)  2.028  .044 *   [ 0.007, 0.382]
##  2.893 (Mean)            0.057 (0.068)  0.839  .402     [-0.076, 0.189]
##  4.330 (+ SD)           -0.081 (0.096) -0.842  .401     [-0.268, 0.107]
## ───────────────────────────────────────────────────────────────────────

8.2 Plot

interact_plot(Sb10.WP.AIEnabledInnovationBehaviorVBA.NeedForPersonalizationDueToAIV$model.y, W.X01, BA.NeedForPersonalizationDueToAIV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.NeedForPersonalizationDueToAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.PositiveReflectionOnAIUseV$model.y, W.X01, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.PositiveReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.AIOnlineCommunicationSkillsV$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SystemPerformanceImprovementBehaviorVBA.ClarityOfInformationV$model.y, W.X01, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.StructureV$model.y, W.X01, BA.StructureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.NegativeReflectionOnAIUseV$model.y, W.X01, BA.NegativeReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.NegativeReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.LearningFromErrorsVBB.AIUsageV$model.y, W.X01, BB.AIUsageV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BB.AIUsageV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.LearningFromErrorsVBA.AIInteractionQualityV$model.y, W.X01, BA.AIInteractionQualityV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIInteractionQualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.AffectiveRuminationVBA.AIOnlineCommunicationSkillsV$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.ClarityOfInformationV$model.y, W.X01, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.LearningBehaviorVBB.AITechnologyAnxietyV$model.y, W.X01, BB.AITechnologyAnxietyV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BB.AITechnologyAnxietyV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.PerceivedWorkGrowthVBB.TrustInAIV$model.y, W.X01, BB.TrustInAIV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BB.TrustInAIV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.AIOnlineCommunicationSkillsV$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.StructureV$model.y, W.X01, BA.StructureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.StructureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.TakingChargeBehaviorsForSystemImprovementVBA.ClarityOfInformationV$model.y, W.X01, BA.ClarityOfInformationV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ClarityOfInformationV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WA.ErrorStrainVBA.EffectivenessV$model.y, W.X01, BA.EffectivenessV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.EffectivenessV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.VoiceForSystemImprovmentVBA.QualityV$model.y, W.X01, BA.QualityV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.QualityV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SocialLearningVBA.ProblemSolvingConfidenceV$model.y, W.X01, BA.ProblemSolvingConfidenceV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ProblemSolvingConfidenceV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIUsageForFacilitatingWorkVBA.PersonalControlV$model.y, W.X01, BA.PersonalControlV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.PersonalControlV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.AIEnabledCreativityVBA.PersonalControlV$model.y, W.X01, BA.PersonalControlV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.PersonalControlV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.SocialLearningVBA.PositiveReflectionOnAIUseV$model.y, W.X01, BA.PositiveReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.PositiveReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FamilyMemberUndermingVBA.AIServiceFailureV$model.y, W.X01, BA.AIServiceFailureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIServiceFailureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FamilyMemberConflictVBA.AIServiceFailureV$model.y, W.X01, BA.AIServiceFailureV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIServiceFailureV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(Sb10.WP.FeedbackSeekingForSystemImprovementVBA.AnthropomorphismV$model.y, W.X01, BA.AnthropomorphismV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AnthropomorphismV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))