# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("JPM", "NVDA", "LLY", "AMZN")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "JPM" "LLY" "NVDA"
#weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 JPM 0.25
## 3 LLY 0.25
## 4 NVDA 0.25
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0540
## 2 2013-02-28 0.0249
## 3 2013-03-28 0.00741
## 4 2013-04-30 0.00880
## 5 2013-05-31 0.0473
## 6 2013-06-28 -0.0279
## 7 2013-07-31 0.0622
## 8 2013-08-30 -0.0412
## 9 2013-09-30 0.0405
## 10 2013-10-31 0.0306
## # ℹ 50 more rows
# Get market returns
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
# Combine market returns with portfolio returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%
# Add market returns
mutate(market_returns = market_returns_tbl %>% pull(returns))
# 3 Calculating CAPM Beta ----
# A complete list of functions for performance_fun()
# tq_performance_fun_options()
portfolio_market_returns_tbl %>%
tq_performance(Ra = returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.03
# Figure 8.2 Scatter with regression line from ggplot ----
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")
The beta coefficient measures the sensitivity of a portfolio’s returns relative to market returns. A beta of 1 suggests that the portfolio moves in tandem with the market. A beta greater than 1 indicates higher sensitivity, meaning the portfolio is more volatile than the market, while a beta less than 1 suggests lower sensitivity or volatility compared to the market.
The portfolio’s risk and returns are likely to experience slightly more volatility than the market. A beta of 1.03 indicates a near-market level of risk with just a slight increase in volatility.
The scatter plot with the regression line, showing a slope close to the benchmark, visually supports this calculated beta of 1.03. The plot confirms that your portfolio’s returns track the market closely, with a slight amplification in reaction to market changes.