library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.4.1
## Warning: package 'dplyr' was built under R version 4.4.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(stats)
all_countries <- read.csv("all_countries.csv")
as.data.frame(na.omit(all_countries))
##                 Country Code   LandArea Population Density    GDP Rural   CO2
## 2               Albania  ALB    27.4000      2.866   104.6   5254  39.7  1.98
## 3               Algeria  DZA  2381.7400     42.228    17.7   4279  27.4  3.74
## 6                Angola  AGO  1246.7000     30.810    24.7   3432  34.5  1.29
## 8             Argentina  ARG  2736.6900     44.495    16.3  11653   8.1  4.78
## 9               Armenia  ARM    28.4700      2.952   103.7   4212  36.9  1.90
## 11            Australia  AUS  7692.0200     24.992     3.2  57305  14.0 15.39
## 12              Austria  AUT    82.5230      8.847   107.2  51513  41.7  6.87
## 13           Azerbaijan  AZE    82.6700      9.942   120.3   4721  44.3  3.93
## 16           Bangladesh  BGD   130.1700    161.356  1239.6   1698  63.4  0.47
## 18              Belarus  BLR   202.9880      9.485    46.7   6290  21.4  6.70
## 21                Benin  BEN   112.7600     11.485   101.9    902  52.7  0.61
## 24              Bolivia  BOL  1083.3000     11.353    10.5   3549  30.6  1.91
## 26             Botswana  BWA   566.7300      2.254     4.0   8259  30.6  3.37
## 27               Brazil  BRA  8358.1400    209.469    25.1   8921  13.4  2.61
## 30             Bulgaria  BGR   108.5600      7.024    64.7   9273  25.0  5.87
## 34             Cambodia  KHM   176.5200     16.250    92.1   1512  76.6  0.44
## 35             Cameroon  CMR   472.7100     25.216    53.3   1527  43.6  0.31
## 41                Chile  CHL   743.5320     18.729    25.2  15923  12.4  4.65
## 43             Colombia  COL  1109.5000     49.649    44.7   6651  19.2  1.79
## 46          Congo, Rep.  COG   341.5000      5.244    15.4   2148  33.1  0.65
## 47           Costa Rica  CRI    51.0600      4.999    97.9  12027  20.7  1.62
## 48        Cote d'Ivoire  CIV   318.0000     25.069    78.8   1716  49.2  0.49
## 52               Cyprus  CYP     9.2400      1.189   128.7  28159  33.2  5.26
## 53       Czech Republic  CZE    77.2200     10.626   137.6  22973  26.2  9.17
## 54              Denmark  DNK    41.9900      5.797   138.1  60596  12.1  5.94
## 57   Dominican Republic  DOM    48.3100     10.627   220.0   7650  18.9  2.12
## 58              Ecuador  ECU   248.3600     17.084    68.8   6345  36.2  2.75
## 59     Egypt, Arab Rep.  EGY   995.4500     98.424    98.9   2549  57.3  2.23
## 60          El Salvador  SLV    20.7200      6.421   309.9   4058  28.0  1.00
## 63              Estonia  EST    43.4700      1.321    30.4  22928  31.1 14.85
## 65             Ethiopia  ETH  1000.0000    109.225   109.2    772  79.2  0.12
## 69               France  FRA   547.5570     66.987   122.3  41464  19.6  4.57
## 71                Gabon  GAB   257.6700      2.119     8.2   8030  10.6  2.76
## 73              Georgia  GEO    69.4900      3.731    65.3   4345  41.4  2.42
## 74              Germany  DEU   349.3600     82.928   237.4  48196  22.7  8.89
## 75                Ghana  GHA   227.5400     29.767   130.8   2202  43.9  0.53
## 77               Greece  GRC   128.9000     10.728    83.2  20324  20.9  6.18
## 81            Guatemala  GTM   107.1600     17.248   161.0   4549  48.9  1.15
## 85                Haiti  HTI    27.5600     11.123   403.6    868  44.7  0.27
## 86             Honduras  HND   111.8900      9.588    85.7   2483  42.9  1.06
## 88              Hungary  HUN    90.5300      9.769   107.9  15939  28.6  4.27
## 90                India  IND  2973.1900   1352.617   454.9   2016  66.0  1.73
## 91            Indonesia  IDN  1811.5700    267.663   147.8   3894  44.7  1.82
## 94              Ireland  IRL    68.8900      4.854    70.5  77450  36.8  7.31
## 97                Italy  ITA   294.1400     60.431   205.5  34318  29.6  5.27
## 98              Jamaica  JAM    10.8300      2.935   271.0   5356  44.3  2.58
## 99                Japan  JPN   364.5600    126.529   347.1  39287   8.4  9.54
## 101          Kazakhstan  KAZ  2699.7000     18.276     6.8   9331  42.6 14.36
## 102               Kenya  KEN   569.1400     51.393    90.3   1711  73.0  0.31
## 107              Kuwait  KWT    17.8200      4.137   232.2  34244   0.0 25.85
## 108     Kyrgyz Republic  KGZ   191.8000      6.316    32.9   1281  63.6  1.65
## 111             Lebanon  LBN    10.2300      6.849   669.5   8270  11.4  3.84
## 116           Lithuania  LTU    62.6420      2.790    44.5  19090  32.3  4.38
## 117          Luxembourg  LUX     2.4300      0.608   250.1 114340   9.0 17.36
## 121            Malaysia  MYS   328.5500     31.529    96.0  11239  24.0  8.13
## 128              Mexico  MEX  1943.9500    126.191    64.9   9698  19.8  3.99
## 132            Mongolia  MNG  1553.5600      3.170     2.0   4104  31.6  7.09
## 133          Montenegro  MNE    13.4500      0.622    46.3   8761  33.2  3.56
## 134             Morocco  MAR   446.3000     36.029    80.7   3238  37.5  1.75
## 135          Mozambique  MOZ   786.3800     29.496    37.5    490  64.0  0.32
## 136             Myanmar  MMR   653.0800     53.708    82.2   1326  69.4  0.41
## 137             Namibia  NAM   823.2900      2.448     3.0   5931  50.0  1.65
## 139               Nepal  NPL   143.3500     28.088   195.9   1026  80.3  0.30
## 140         Netherlands  NLD    33.6900     17.231   511.5  52978   8.5  9.92
## 142         New Zealand  NZL   263.3100      4.886    18.6  41966  13.5  7.69
## 143           Nicaragua  NIC   120.3400      6.466    53.7   2029  41.5  0.79
## 144               Niger  NER  1266.7000     22.443    17.7    412  83.6  0.11
## 145             Nigeria  NGA   910.7700    195.875   215.1   2028  49.7  0.55
## 146     North Macedonia  MKD    25.2200      2.083    82.6   6084  42.0  3.61
## 148              Norway  NOR   365.1230      5.314    14.6  81807  17.8  9.27
## 150            Pakistan  PAK   770.8800    212.215   275.3   1473  63.3  0.85
## 152              Panama  PAN    74.3400      4.177    56.2  15575  32.3  2.26
## 154            Paraguay  PRY   397.3000      6.956    17.5   5871  38.4  0.86
## 155                Peru  PER  1280.0000     31.989    25.0   6947  22.1  2.05
## 156         Philippines  PHL   298.1700    106.652   357.7   3103  53.1  1.05
## 158            Portugal  PRT    91.6056     10.282   112.2  23146  34.8  4.33
## 161             Romania  ROU   230.0800     19.474    84.6  12301  46.0  3.52
## 162  Russian Federation  RUS 16376.8700    144.478     8.8  11289  25.6 11.86
## 168             Senegal  SEN   192.5300     15.854    82.3   1522  52.8  0.62
## 169              Serbia  SRB    87.4600      6.982    79.8   7234  43.9  5.28
## 174     Slovak Republic  SVK    48.0800      5.447   113.3  19547  46.3  5.66
## 175            Slovenia  SVN    20.1420      2.067   102.6  26234  45.5  6.21
## 178        South Africa  ZAF  1213.0900     57.780    47.6   6340  33.6  8.98
## 180               Spain  ESP   499.5640     46.724    93.5  30524  19.7  5.03
## 181           Sri Lanka  LKA    62.7100     21.670   345.6   4102  81.5  0.89
## 192            Tanzania  TZA   885.8000     56.318    63.6   1051  66.2  0.23
## 193            Thailand  THA   510.8900     69.429   135.9   7274  50.1  4.62
## 195                Togo  TGO    54.3900      7.889   145.0    672  58.3  0.37
## 197 Trinidad and Tobago  TTO     5.1300      1.390   270.9  16844  46.8 33.97
## 198             Tunisia  TUN   155.3600     11.565    74.4   3447  31.1  2.61
## 204             Ukraine  UKR   579.2900     44.623    77.0   3095  30.6  5.02
## 208             Uruguay  URY   175.0200      3.449    19.7  17278   4.7  1.98
##     PumpPrice Military Health ArmedForces Internet  Cell  HIV Hunger Diabetes
## 2        1.36     4.08   9.51           9     71.8 123.7  0.1    5.5     10.1
## 3        0.28    13.81  10.73         317     47.7 111.0  0.1    4.7      6.7
## 6        0.97     9.40   5.43         117     14.3  44.7  1.9   23.9      3.9
## 8        1.10     2.05  13.56         105     75.8 139.8  0.4    3.8      5.5
## 9        0.77    20.86   6.05          49     69.7 119.0  0.2    4.3      7.1
## 11       0.93     5.12  17.42          58     86.5 112.7  0.1    2.5      5.1
## 12       1.20     1.52  14.93          21     87.9 170.8  0.1    2.5      6.4
## 13       0.56    10.99   3.88          82     79.0 103.0  0.1    2.5      7.1
## 16       1.12    10.16   3.38         221     18.0  91.7  0.1   15.2      8.4
## 18       0.60    31.90   8.47         155     74.4 120.6  0.4    2.5      5.2
## 21       0.72     3.72   3.72          12     14.1  78.5  1.0   10.4      1.0
## 24       0.71     3.88  11.33          71     43.8  99.2  0.3   19.8      6.9
## 26       0.71     8.56   9.15           9     41.4 141.4 22.8   28.5      4.8
## 27       1.02     3.90   9.90         730     67.5 113.0  0.6    2.5      8.1
## 30       1.11     4.81  11.90          31     63.4 120.4  0.1    3.0      5.8
## 34       0.90     9.17   6.16         191     34.0 116.0  0.5   18.5      4.0
## 35       1.03     6.03   2.95          24     23.2  83.7  3.7    7.3      7.2
## 41       1.03     7.41  19.74         122     82.3 127.5  0.6    3.3      8.5
## 43       0.68    11.63  13.37         481     62.3 126.8  0.5    6.5      7.4
## 46       0.97    10.44   3.92          12      8.7  96.1  3.1   37.5      7.2
## 47       0.98     0.00  29.19          10     71.6 180.2  0.4    4.4      8.8
## 48       0.93     5.98   4.88          27     43.8 130.7  2.8   20.7      2.4
## 52       1.23     4.26   7.53          16     80.7 138.5  0.1    4.6      9.2
## 53       1.17     2.76  14.83          23     78.7 119.0  0.1    2.5      6.8
## 54       1.55     2.31  16.25          15     97.1 121.7  0.1    2.5      6.4
## 57       1.07     4.14  16.00          71     65.0  81.4  0.9   10.4      8.2
## 58       0.61     6.37  10.99          41     57.3  88.1  0.3    7.8      5.6
## 59       0.40     4.14   4.22         836     45.0 105.5  0.1    4.8     17.3
## 60       0.83     4.24  20.93          42     31.3 156.5  0.6   10.3      8.9
## 63       1.14     5.13  12.41           6     88.1 145.4  0.7    2.8      4.0
## 65       0.75     3.85   6.02         138     18.6  37.7  0.9   21.4      7.5
## 69       1.39     4.10  16.97         307     80.5 106.2  0.5    2.5      4.8
## 71       0.92     9.17   9.20           7     50.3 131.5  4.2    9.4      7.2
## 73       0.76     6.61  10.29          26     60.5 140.7  0.4    7.4      7.1
## 74       1.39     2.82  21.36         180     84.4 133.6  0.2    2.5      8.3
## 75       0.92     1.56   6.54          16     37.9 127.5  1.7    6.1      5.0
## 77       1.54     4.92  10.32         146     69.9 115.9  0.2    2.5      4.6
## 81       0.79     2.88  17.94          43     40.7 118.2  0.4   15.8     10.2
## 85       0.81     0.00   4.42           0     12.3  57.4  1.9   45.8      6.7
## 86       0.98     6.46  14.04          23     32.1  88.9  0.3   15.3      7.2
## 88       1.18     2.23  10.42          40     76.8 113.5  0.1    2.5      7.6
## 90       0.97     8.74   3.14        3031     34.5  87.3  0.2   14.8     10.4
## 91       0.63     4.29   8.31         676     32.3 164.9  0.4    7.7      6.3
## 94       1.37     1.26  19.65           9     84.5 102.9  0.2    2.5      3.3
## 97       1.61     2.77  13.47         347     61.3 141.3  0.2    2.5      4.8
## 98       1.11     4.37  12.85           4     48.8 107.0  1.8    8.9     11.3
## 99       1.06     2.53  23.39         261     90.9 135.5  0.1    2.5      5.7
## 101      0.42     4.77   9.40          71     76.4 146.6  0.2    2.5      7.1
## 102      0.95     4.81   6.06          29     17.8  86.1  4.8   24.2      2.9
## 107      0.35    11.01   6.21          25     98.0 172.6  0.1    2.5     15.8
## 108      0.56     4.39   6.60          21     38.2 121.9  0.2    6.5      7.1
## 111      0.74    15.56  14.33          80     78.2  72.3  0.1   10.9     12.7
## 116      1.16     5.84  12.80          34     77.6 150.9  0.2    2.5      3.7
## 117      1.19     1.40  11.88           2     97.8 136.1  0.3    2.5      4.4
## 121      0.45     4.26   8.23         136     80.1 133.9  0.4    2.9     16.7
## 128      0.73     2.08  10.41         336     63.9  88.5  0.3    3.8     13.1
## 132      0.72     2.51   5.33          18     23.7 126.4  0.1   18.7      4.8
## 133      1.16     3.24  12.06          12     71.3 166.1  0.1    2.5     10.1
## 134      0.99    10.48   9.07         246     61.8 122.9  0.1    3.9      7.1
## 135      0.65     3.18   8.35          11     20.8  40.0 12.5   30.5      3.3
## 136      0.54    15.20   4.79         513     30.7  89.8  0.7   10.5      4.6
## 137      0.76     8.80  13.80          16     36.8 105.8 12.1   25.4      3.9
## 139      0.91     4.50   5.31         112     21.4 123.2  0.2    9.5      7.3
## 140      1.68     2.90  19.31          41     93.2 120.5  0.2    2.5      5.3
## 142      1.40     3.03  22.48           9     90.8 136.0  0.1    2.5      8.1
## 143      0.91     2.17  20.04          12     27.9 131.6  0.2   16.2     11.5
## 144      0.88     9.49   5.69          10     10.2  40.9  0.3   14.4      2.4
## 145      0.46     4.05   5.01         215     27.7  75.9  2.8   11.5      2.4
## 146      1.11     3.06  13.05          16     76.3  96.4  0.1    4.1     10.1
## 148      1.78     3.41  17.59          23     96.5 107.9  0.1    2.5      5.3
## 150      0.79    18.51   3.86         936     15.5  73.4  0.1   20.5      8.4
## 152      0.74     0.00  21.44          26     57.9 126.7  1.0    9.2      8.3
## 154      1.04     4.82  16.18          27     61.1 109.6  0.5   11.2      8.3
## 155      0.99     5.57  15.71         158     48.7 121.0  0.3    8.8      6.0
## 156      0.86     5.44   7.10         153     60.1 110.4  0.1   13.7      7.1
## 158      1.54     4.08  13.40          52     73.8 113.9  0.6    2.5      9.9
## 161      1.16     5.96  11.32         126     63.7 113.8  0.1    2.5      9.7
## 162      0.59    11.40   8.23        1454     76.0 157.9  1.2    2.5      6.2
## 168      1.14     8.80   6.15          19     29.6  99.4  0.4   11.3      2.4
## 169      1.16     4.38  12.34          32     70.3 124.0  0.1    5.6     10.1
## 174      1.32     3.01  13.71          16     81.6 130.7  0.1    2.7      7.3
## 175      1.32     2.48  13.52           7     78.9 117.5  0.1    2.5      7.3
## 178      0.92     2.95  13.32          80     56.2 156.0 18.8    6.1      5.5
## 180      1.26     3.09  15.14         196     84.6 113.3  0.4    2.5      7.2
## 181      0.88    10.14   8.56         317     34.1 135.1  0.1   10.9     10.7
## 192      0.87     6.91   9.52          28     16.0  69.7  4.5   32.0      5.8
## 193      0.71     6.34  15.26         455     52.9 176.0  1.1    9.0      7.0
## 195      0.71     7.11   4.25          10     12.4  77.8  2.1   16.2      6.2
## 197      0.54     2.41   9.66           4     77.3 148.3  1.1    4.9     11.0
## 198      0.73     6.89  13.72          48     55.5 124.3  0.1    4.9      8.5
## 204      0.83     8.71   7.03         297     57.1 133.5  0.9    3.3      7.1
## 208      1.50     5.76  19.49          22     68.3 147.5  0.6    2.5      6.9
##     BirthRate DeathRate ElderlyPop LifeExpectancy FemaleLabor Unemployment
## 2        11.7       7.5       13.6           78.5        55.9         13.9
## 3        22.3       4.8        6.4           76.3        16.4         12.1
## 6        41.3       8.4        2.5           61.8        76.4          7.3
## 8        17.0       7.6       11.3           76.7        57.1          9.5
## 9        13.1       9.7       11.4           74.8        55.8         17.7
## 11       12.4       6.5       15.7           82.5        72.5          5.4
## 12       10.0       9.5       19.4           81.6        71.8          4.8
## 13       14.6       5.8        6.2           72.1        69.2          5.2
## 16       18.6       5.3        5.1           72.8        38.1          4.3
## 18       10.8      12.6       15.0           74.1        74.6          5.7
## 21       36.6       9.0        3.3           61.2        70.6          2.1
## 24       23.0       7.3        6.8           69.5        58.1          3.3
## 26       23.2       6.4        4.1           67.6        69.1         17.9
## 27       13.9       6.2        8.9           75.7        60.6         12.5
## 30        9.0      15.5       21.1           74.8        67.5          5.3
## 34       22.9       6.0        4.6           69.3        77.2          1.0
## 35       35.8       9.8        3.2           58.6        72.1          3.4
## 41       13.1       6.2       11.5           79.7        58.2          7.2
## 43       14.9       6.1        8.0           74.6        63.7          9.1
## 46       34.1       7.1        3.4           65.1        68.1         10.4
## 47       14.1       5.0        9.8           80.0        51.8          8.1
## 48       36.6      11.9        2.9           54.1        49.3          2.5
## 52       10.7       7.0       13.7           80.7        68.9          8.1
## 53       10.8      10.5       19.5           79.5        69.3          2.4
## 54       10.6       8.2       19.8           81.0        76.2          5.0
## 57       19.8       6.1        7.2           74.0        55.0          5.8
## 58       19.9       5.1        7.3           76.6        59.8          3.9
## 59       25.7       5.9        5.2           71.7        24.7         11.4
## 60       18.4       6.8        8.5           73.8        50.0          4.4
## 63       10.5      11.8       19.7           77.6        75.3          5.5
## 65       31.3       6.7        3.5           65.9        76.9          1.8
## 69       11.4       9.0       20.1           82.5        67.5          9.2
## 71       28.9       7.4        4.4           66.5        45.4         19.5
## 73       13.2      13.2       15.0           73.4        63.4         14.1
## 74        9.5      11.3       21.7           81.0        74.1          3.4
## 75       30.5       8.0        3.4           63.0        65.3          6.7
## 77        8.2      11.6       20.6           81.4        60.5         19.2
## 81       24.9       4.8        4.8           73.7        43.1          2.7
## 85       23.8       8.5        4.9           63.6        64.8         13.5
## 86       21.4       4.8        4.8           73.8        49.3          4.1
## 88        9.7      13.5       19.2           76.1        64.7          3.7
## 90       18.8       7.3        6.2           68.8        24.8          2.6
## 91       18.6       7.2        5.5           69.4        54.3          4.3
## 94       12.9       6.3       14.3           82.0        66.7          5.7
## 97        7.6      10.7       23.3           83.2        55.7         10.2
## 98       16.4       7.0        9.9           76.1        66.9          9.4
## 99        7.6      10.8       27.5           84.1        69.8          2.4
## 101      21.6       7.2        7.2           73.0        73.7          4.9
## 102      30.9       5.7        2.7           67.3        64.1          9.3
## 107      16.0       2.8        2.5           74.8        58.8          2.1
## 108      24.8       5.4        4.7           71.2        51.6          7.2
## 111      15.5       4.7        8.7           79.8        26.3          6.2
## 116      10.1      14.2       19.2           74.7        74.8          6.0
## 117      10.4       7.1       14.5           82.7        65.8          5.5
## 121      17.0       5.0        6.5           75.5        54.9          3.4
## 128      17.8       4.9        7.1           77.3        47.1          3.3
## 132      23.1       6.3        4.1           69.5        56.5          6.3
## 133      11.2       9.9       15.3           77.3        53.7         15.5
## 134      19.5       5.1        7.0           76.1        23.1          9.0
## 135      38.6       9.8        3.2           58.9        78.0          3.2
## 136      17.6       8.2        6.0           66.7        51.7          1.6
## 137      28.7       7.1        3.6           64.9        58.7         23.1
## 139      19.5       6.2        6.0           70.6        84.5          1.3
## 140       9.9       8.8       19.2           81.6        75.4          3.9
## 142      12.4       7.0       15.6           81.7        76.4          4.5
## 143      19.1       4.8        5.7           75.7        53.9          4.5
## 144      47.8       9.5        2.6           60.4        68.9          0.3
## 145      38.4      12.2        2.7           53.9        50.5          6.0
## 146      11.2       9.9       13.7           75.9        51.8         21.6
## 148      10.7       7.7       17.0           82.5        75.2          3.9
## 150      27.7       7.2        4.5           66.6        25.2          3.0
## 152      19.2       5.0        8.1           78.2        57.4          3.9
## 154      20.7       5.8        6.6           73.2        60.5          4.7
## 155      18.9       5.7        7.3           75.2        73.3          2.8
## 156      23.0       6.5        4.9           69.2        47.7          2.5
## 158       8.4      10.6       21.9           81.1        71.8          6.9
## 161       9.7      13.3       18.3           75.3        58.2          4.3
## 162      12.9      12.9       14.6           72.1        68.9          4.7
## 168      35.0       5.7        3.0           67.5        36.5          6.5
## 169       9.2      14.8       17.9           76.1        59.3         13.5
## 174      10.7       9.9       15.6           77.2        66.4          6.8
## 175       9.8       9.9       19.7           81.2        71.4          5.5
## 178      20.7       9.6        5.5           63.4        53.4         27.0
## 180       8.4       9.0       19.7           83.3        68.8         15.5
## 181      15.0       7.0       10.4           75.5        38.2          4.4
## 192      37.8       6.5        3.1           66.3        81.0          1.9
## 193      10.1       8.0       11.8           75.5        67.2          0.7
## 195      33.5       8.6        2.9           60.5        77.7          1.7
## 197      13.3       9.7       10.3           70.8        58.0          2.8
## 198      17.9       6.3        8.3           75.9        27.1         15.5
## 204       9.4      14.5       16.8           71.8        60.5          9.4
## 208      13.9       9.4       14.8           77.6        68.4          8.0
##     Energy Electricity Developed
## 2      808        2309         1
## 3     1328        1363         1
## 6      545         312         1
## 8     2030        3075         2
## 9     1016        1962         1
## 11    5335       10071         3
## 12    3763        8356         3
## 13    1502        2202         1
## 16     229         320         1
## 18    2929        3680         2
## 21     417         100         1
## 24     778         743         1
## 26    1301        1816         1
## 27    1496        2620         2
## 30    2478        4709         2
## 34     417         271         1
## 35     335         275         1
## 41    2033        3880         2
## 43     724        1312         1
## 46     555         203         1
## 47    1023        1942         1
## 48     613         275         1
## 52    1712        3625         2
## 53    3915        6259         3
## 54    2873        5859         3
## 57     752        1616         1
## 58     889        1376         1
## 59     827        1683         1
## 60     646         937         1
## 63    4593        6732         3
## 65     493          69         1
## 69    3659        6940         3
## 71    2694        1168         1
## 73    1180        2694         2
## 74    3779        7035         3
## 75     332         351         1
## 77    2124        5063         3
## 81     830         578         1
## 85     394          39         1
## 86     598         620         1
## 88    2314        3966         2
## 90     637         805         1
## 91     884         812         1
## 94    2742        5672         3
## 97    2414        5002         3
## 98     977        1051         1
## 99    3471        7820         3
## 101   4435        5600         3
## 102    506         164         1
## 107   9179       15591         3
## 108    650        1941         1
## 111   1197        2588         2
## 116   2387        3821         2
## 117   6861       13915         3
## 121   3003        4652         2
## 128   1562        2157         1
## 132   1828        2006         1
## 133   1538        4612         2
## 134    555         904         1
## 135    443         479         1
## 136    369         215         1
## 137    794        1653         1
## 139    434         146         1
## 140   4326        6713         3
## 142   4560        9026         3
## 143    596         568         1
## 144    150          51         1
## 145    764         145         1
## 146   1262        3497         2
## 148   5596       23000         3
## 150    460         448         1
## 152   1080        2064         1
## 154    783        1552         1
## 155    790        1346         1
## 156    474         696         1
## 158   2035        4663         2
## 161   1592        2584         2
## 162   4943        6603         3
## 168    279         229         1
## 169   1859        4272         2
## 174   2943        5137         3
## 175   3236        6728         3
## 178   2695        4198         2
## 180   2465        5356         3
## 181    516         531         1
## 192    497         104         1
## 193   1969        2539         2
## 195    462         155         1
## 197  14364        7093         3
## 198    950        1455         1
## 204   2334        3419         2
## 208   1386        3085         2
cor(all_countries$Population, all_countries$GDP, use='complete.obs')
## [1] -0.0449688

A higher population is not correlated to a higher GDP within a country. As one increases, the other decreases.

lm_model <- lm(LifeExpectancy ~ GDP, data = all_countries)

lm_model
## 
## Call:
## lm(formula = LifeExpectancy ~ GDP, data = all_countries)
## 
## Coefficients:
## (Intercept)          GDP  
##   6.842e+01    2.476e-04

The linear regression model is

LifeExpectancy = 0.0002(GDP) + 68.42

This means that when a country’s GDP is 0, their life expectancy is 68.42 years. The slope of the model is 0.0002, meaning that for every additional unit of GDP, the life expectancy increases by 0.0002. We can plug in different GDP numbers to predict a country’s life expectancy. Since the slop of the equation is positive, as the GDP increases, so does the life expectancy.

lm_model2 <- lm(Health ~ CO2, data = all_countries)

summary(lm_model2)
## 
## Call:
## lm(formula = Health ~ CO2, data = all_countries)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.413  -4.176  -0.980   3.210  26.729 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.84685    0.52417  18.786   <2e-16 ***
## CO2          0.17481    0.06872   2.544   0.0118 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.688 on 183 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.03416,    Adjusted R-squared:  0.02888 
## F-statistic: 6.471 on 1 and 183 DF,  p-value: 0.01179
summary_lm <- summary(lm_model2)
summary_lm$r.squared
## [1] 0.03415519

The regression line is a good fit. The p-value is 0.01 which is statistically significant since it is less than 0.05. The residual median is close to 0 and very strong at -0.98, meaning the data points are -0.98 units below the regression line on average. However, only about 3.4% of the variability of the health can be explained by the CO2 level.

ggplot(all_countries, aes(x = Health, y = CO2)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, color = "green") +
  labs(x = "Health Prevalence By Country",
       y = "CO2 Level",
       title = "Linear Regression: Health vs. CO2") +
  theme_bw()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 32 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 32 rows containing missing values or values outside the scale range
## (`geom_point()`).