scooby <- read_excel("../00_data/MyData.xlsx")
scooby %>% count(network)
## # A tibble: 11 × 2
## network n
## <chr> <int>
## 1 ABC 281
## 2 Adult Swim 1
## 3 Boomerang 74
## 4 CBS 49
## 5 Cartoon Network 84
## 6 Syndication 3
## 7 TBC 1
## 8 The CW 27
## 9 The WB 41
## 10 Warner Bros. Picture 3
## 11 Warner Home Video 39
network_levels <- c("ABC", "Cartoon Network", "Boomerang", "CBS", "The WB", "Warner Home Video", "The CW", "Syndication", "Warner Bros. Picture", "Adult Swim", "TBC")
scooby_rev <- scooby %>%
mutate(network = network %>% factor(levels = network_levels))
scooby_rev %>% count(network)
## # A tibble: 11 × 2
## network n
## <fct> <int>
## 1 ABC 281
## 2 Cartoon Network 84
## 3 Boomerang 74
## 4 CBS 49
## 5 The WB 41
## 6 Warner Home Video 39
## 7 The CW 27
## 8 Syndication 3
## 9 Warner Bros. Picture 3
## 10 Adult Swim 1
## 11 TBC 1
Make two bar charts here - one before ordering another after
scooby_summary <- scooby %>%
group_by(series_name) %>%
summarise(
imdb = mean(imdb, na.rm = TRUE)
)
scooby_summary
## # A tibble: 29 × 2
## series_name imdb
## <chr> <dbl>
## 1 A Pup Named Scooby-Doo 7.35
## 2 Be Cool, Scooby-Doo! 7.43
## 3 Dynomutt, Dogwonder 6.8
## 4 Hanna-Barbera Superstars 10 6.97
## 5 Harvey Birdman, Attorney at Law 8.1
## 6 Johnny Bravo 8.4
## 7 Laff-a-Lympics 6.66
## 8 Lego 6.03
## 9 Night of the Living Doo 7.2
## 10 OK K.O.! 8.1
## # ℹ 19 more rows
ggplot(scooby_summary, aes(imdb, series_name)) + geom_point()
ggplot(scooby_summary, aes(imdb, fct_reorder(series_name, imdb))) + geom_point()
Show examples of three functions:
scooby %>%
mutate(series_name = fct_recode(series_name,
"SN" = "Supernatural",
"JB" = "Johnny Bravo",
"MI" = "Scooby-Doo Mystery Incorporated",
"SD" = "Scooby Doo, Where Are You!",
"OK" = "OK K.O.!",
"AL" = "Harvey Birdman, Attorney at Law",
"GW" = "Scooby-Doo and Guess Who?",
"NM" = "The New Scooby-Doo Movies",
"SS" = "The Scooby-Doo Show",
"13" = "The 13 Ghosts of Scooby-Doo",
"S1" = "Scooby-Doo and Scrappy-Doo (first series)",
"BC" = "Be Cool, Scooby-Doo!",
"WN" = "What's New Scooby-Doo?",
"SP" = "The Scooby-Doo Project",
"AP" = "A Pup Named Scooby-Doo",
"NS" = "The New Scooby-Doo Mysteries",
"ND" = "The New Scooby and Scrappy Doo Show",
"LD" = "Night of the Living Doo",
"S2" = "Scooby-Doo and Scrappy-Doo (second series)",
"HB" = "Hanna-Barbera Superstars 10",
"DD" = "Dynomutt, Dogwonder",
"LL" = "Laff-a-Lympics",
"HV" = "Warner Home Video",
"TT" = "Teen Titans",
"GH" = "Scooby Goes Hollywood",
"LG" = "Lego",
"TV" = "TV Special",
"GC" = "Shaggy & Scooby-Doo Get a Clue!",
"WB" = "Warner Bros. Picture")) %>%
count(network)
## # A tibble: 11 × 2
## network n
## <chr> <int>
## 1 ABC 281
## 2 Adult Swim 1
## 3 Boomerang 74
## 4 CBS 49
## 5 Cartoon Network 84
## 6 Syndication 3
## 7 TBC 1
## 8 The CW 27
## 9 The WB 41
## 10 Warner Bros. Picture 3
## 11 Warner Home Video 39
scooby %>%
mutate(series_name = fct_collapse(series_name,
Original = "Scooby Doo, Where Are You!",
Others = "Supernatural","Johnny Bravo", "Scooby-Doo Mystery Incorporated", "OK K.O.!", "Harvey Birdman, Attorney at Law", "Scooby-Doo and Guess Who?", "The New Scooby-Doo Movies", "The Scooby-Doo Show", "The 13 Ghosts of Scooby-Doo", "Scooby-Doo and Scrappy-Doo (first series)", "Be Cool, Scooby-Doo!", "What's New Scooby-Doo?", "The Scooby-Doo Project", "A Pup Named Scooby-Doo", "The New Scooby-Doo Mysteries", "The New Scooby and Scrappy Doo Show", "Night of the Living Doo", "Scooby-Doo and Scrappy-Doo (second series)", "Hanna-Barbera Superstars 10", "Dynomutt, Dogwonder", "Laff-a-Lympics", "Warner Home Video", "Teen Titans", "Scooby Goes Hollywood", "Lego", "TV Special", "Shaggy & Scooby-Doo Get a Clue!", "Warner Bros. Picture")) %>%
count(series_name)
## # A tibble: 3 × 2
## series_name n
## <fct> <int>
## 1 "" 577
## 2 "Original" 25
## 3 "Others" 1
scooby %>%
mutate(series_name = fct_lump(series_name)) %>%
count(series_name)
## # A tibble: 29 × 2
## series_name n
## <fct> <int>
## 1 A Pup Named Scooby-Doo 30
## 2 Be Cool, Scooby-Doo! 53
## 3 Dynomutt, Dogwonder 3
## 4 Hanna-Barbera Superstars 10 3
## 5 Harvey Birdman, Attorney at Law 1
## 6 Johnny Bravo 1
## 7 Laff-a-Lympics 48
## 8 Lego 3
## 9 Night of the Living Doo 1
## 10 OK K.O.! 1
## # ℹ 19 more rows
No need to do anything here.