data <- read_excel("../00_data/myDataOlympics.xlsx")
data %>% count(medal)
## # A tibble: 4 × 2
## medal n
## <chr> <int>
## 1 Bronze 13295
## 2 Gold 13372
## 3 NA 231333
## 4 Silver 13116
medal_levels <- c("Bronze", "Silver", "Gold")
data_rev <- data %>%
mutate(medal = medal %>% factor(levels = medal_levels))
Make two bar charts here - one before ordering another after
data_summary <- data %>%
group_by(medal) %>%
summarise(
year = mean(year, na.rm = TRUE))
data_summary
## # A tibble: 4 × 2
## medal year
## <chr> <dbl>
## 1 Bronze 1975.
## 2 Gold 1973.
## 3 NA 1979.
## 4 Silver 1974.
ggplot(data_summary, aes(year, medal)) + geom_point()
ggplot(data_summary, aes(year, fct_reorder(medal, year))) + geom_point()
Show examples of three functions:
data %>%
mutate(medal = fct_recode(medal,
"third" = "Bronze",
"second" = "Silver",
"first" = "Gold")) %>%
count(medal)
## # A tibble: 4 × 2
## medal n
## <fct> <int>
## 1 third 13295
## 2 first 13372
## 3 NA 231333
## 4 second 13116
data %>%
mutate(medal = fct_collapse(medal,
third = "Bronze",
Other = c("Silver", "Gold"))) %>%
count(medal)
## # A tibble: 3 × 2
## medal n
## <fct> <int>
## 1 third 13295
## 2 Other 26488
## 3 NA 231333
data %>%
mutate(medal = fct_lump(medal)) %>%
count(medal)
## # A tibble: 2 × 2
## medal n
## <fct> <int>
## 1 NA 231333
## 2 Other 39783
No need to do anything here.