# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("X", "CMC", "ZEUS", "GOOG", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CMC" "GOOG" "TSLA" "X" "ZEUS"
weights <- c(0.20, 0.30, 0.25, 0.15, 0.1)
weights
## [1] 0.20 0.30 0.25 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 CMC 0.2
## 2 GOOG 0.3
## 3 TSLA 0.25
## 4 X 0.15
## 5 ZEUS 0.1
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 143 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0547
## 2 2013-02-28 -0.0168
## 3 2013-03-28 0.0172
## 4 2013-04-30 0.0538
## 5 2013-05-31 0.199
## 6 2013-06-28 0.0132
## 7 2013-07-31 0.0809
## 8 2013-08-30 0.0335
## 9 2013-09-30 0.0975
## 10 2013-10-31 0.0443
## # ℹ 133 more rows
market_returns_tbl <- tq_get(x = "DJI",
get = "stock.prices",
from = "2012-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
market_returns_tbl
## # A tibble: 105 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0561
## 2 2013-02-28 0.0139
## 3 2013-03-28 0.0366
## 4 2013-04-30 0.0178
## 5 2013-05-31 0.0184
## 6 2013-06-28 -0.0137
## 7 2013-07-31 0.0388
## 8 2013-08-30 -0.0455
## 9 2013-09-30 0.0213
## 10 2013-10-31 0.0271
## # ℹ 95 more rows
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 105 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0561 0.0547
## 2 2013-02-28 0.0139 -0.0168
## 3 2013-03-28 0.0366 0.0172
## 4 2013-04-30 0.0178 0.0538
## 5 2013-05-31 0.0184 0.199
## 6 2013-06-28 -0.0137 0.0132
## 7 2013-07-31 0.0388 0.0809
## 8 2013-08-30 -0.0455 0.0335
## 9 2013-09-30 0.0213 0.0975
## 10 2013-10-31 0.0271 0.0443
## # ℹ 95 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.31
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The CAPM beta of this portfolio is 1.14 meaning it is slightly more volatile than the merket. The graph shows this as the regression line is slighltly more weighted to the portfolio returns over the market returns.