##Part1
# Load the wooldridge package and data
library(wooldridge)

data("vote1")

# Estimate the model with interaction term
model <- lm(voteA ~ prtystrA + expendA + expendB + I(expendA * expendB), data = vote1)
summary(model)
## 
## Call:
## lm(formula = voteA ~ prtystrA + expendA + expendB + I(expendA * 
##     expendB), data = vote1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.9999  -8.7632  -0.1726   8.2310  29.7325 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           3.212e+01  4.591e+00   6.995 5.99e-11 ***
## prtystrA              3.419e-01  8.799e-02   3.886 0.000146 ***
## expendA               3.828e-02  4.960e-03   7.718 1.00e-12 ***
## expendB              -3.172e-02  4.588e-03  -6.915 9.32e-11 ***
## I(expendA * expendB) -6.629e-06  7.186e-06  -0.923 0.357584    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.13 on 168 degrees of freedom
## Multiple R-squared:  0.5708, Adjusted R-squared:  0.5606 
## F-statistic: 55.86 on 4 and 168 DF,  p-value: < 2.2e-16
##Part2

#As it shows an error in the values, it cannot be statistically significant

##Part3

# Calculate the mean of expendA
mean_expendA <- mean(vote1$expendA, na.rm = TRUE)

# Set expendA to 300 and increase expendB by 100
expendA_value <- 300
delta_expendB <- 100

# Calculate the partial effect using the estimated coefficients
coefficients <- coef(model)
effect_increase_expendB <- coefficients["expendB"] + coefficients["I(expendA * expendB)"] * expendA_value

# Print the effect
effect_increase_expendB * delta_expendB
##   expendB 
## -3.371269
##Part4

# Set expendB to 100 and calculate effect of increasing expendA by 100
expendB_value <- 100
delta_expendA <- 100

# Calculate the partial effect of expendA
effect_increase_expendA <- coefficients["expendA"] + coefficients["I(expendA * expendB)"] * expendB_value

# Print the effect
effect_increase_expendA * delta_expendA
##  expendA 
## 3.761799
# Calculate shareA
vote1$shareA <- vote1$expendA / (vote1$expendA + vote1$expendB)

# Estimate the new model without the interaction term
model_share <- lm(voteA ~ prtystrA + shareA, data = vote1)
summary(model_share)
## 
## Call:
## lm(formula = voteA ~ prtystrA + shareA, data = vote1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17.7258  -3.7460  -0.0886   3.0517  30.7756 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 19.85013    2.41558   8.218 5.08e-14 ***
## prtystrA     0.15320    0.04962   3.087  0.00236 ** 
## shareA      45.08931    1.47955  30.475  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.231 on 170 degrees of freedom
## Multiple R-squared:  0.8638, Adjusted R-squared:  0.8622 
## F-statistic:   539 on 2 and 170 DF,  p-value: < 2.2e-16
# Set expendA = 300 and expendB = 0
expendA_fixed <- 300
expendB_fixed <- 0

# Calculate shareA with expendB = 0
shareA_fixed <- expendA_fixed / (expendA_fixed + expendB_fixed)

# Calculate partial effect of expendB on voteA numerically
model_share_effect <- lm(voteA ~ prtystrA + I(expendA / (expendA + expendB)), data = vote1)
summary(model_share_effect)
## 
## Call:
## lm(formula = voteA ~ prtystrA + I(expendA/(expendA + expendB)), 
##     data = vote1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17.7258  -3.7460  -0.0886   3.0517  30.7756 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.85013    2.41558   8.218 5.08e-14 ***
## prtystrA                        0.15320    0.04962   3.087  0.00236 ** 
## I(expendA/(expendA + expendB)) 45.08931    1.47955  30.475  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.231 on 170 degrees of freedom
## Multiple R-squared:  0.8638, Adjusted R-squared:  0.8622 
## F-statistic:   539 on 2 and 170 DF,  p-value: < 2.2e-16
# Evaluate the effect at expendA = 300 and expendB = 0
share_effect <- coefficients(model_share_effect)["I(expendA / (expendA + expendB))"]
share_effect
## <NA> 
##   NA