Summer_Movies <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/refs/heads/master/data/2024/2024-07-30/summer_movies.csv')
## Rows: 905 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (6): tconst, title_type, primary_title, original_title, genres, simple_t...
## dbl (4): year, runtime_minutes, average_rating, num_votes
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Summer_Movies %>% count(title_type)
## # A tibble: 3 × 2
## title_type n
## <chr> <int>
## 1 movie 711
## 2 tvMovie 136
## 3 video 58
rank_levels <- c("movie","tvMovie","video")
data_rev <- Summer_Movies %>%
mutate(title_type = title_type %>% factor(levels = rank_levels))
Make two bar charts here - one before ordering another after
data_summary <- Summer_Movies %>%
group_by(title_type) %>%
summarise(
runtime_minutes = mean(runtime_minutes, na.rm = TRUE)
)
data_summary
## # A tibble: 3 × 2
## title_type runtime_minutes
## <chr> <dbl>
## 1 movie 94.7
## 2 tvMovie 82.7
## 3 video 61
ggplot(data_summary, aes(runtime_minutes, title_type)) + geom_point()
ggplot(data_summary, aes(runtime_minutes, fct_reorder(title_type, runtime_minutes))) + geom_point()
Show examples of three functions:
Summer_Movies %>%
mutate(title_type = fct_recode(title_type,
"Movie" = "movie",
"Television Movie" = "tvMovie",
"Video" = "video")) %>%
count(title_type)
## # A tibble: 3 × 2
## title_type n
## <fct> <int>
## 1 Movie 711
## 2 Television Movie 136
## 3 Video 58
Summer_Movies %>%
mutate(title_type = fct_collapse(title_type,
TheaterRelease = "movie",
Other = c("tvMovie", "video"))) %>%
count(title_type)
## # A tibble: 2 × 2
## title_type n
## <fct> <int>
## 1 TheaterRelease 711
## 2 Other 194
Summer_Movies %>%
mutate(title_type = fct_lump(title_type)) %>%
count(title_type)
## # A tibble: 2 × 2
## title_type n
## <fct> <int>
## 1 movie 711
## 2 Other 194
No need to do anything here.