# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("NVDA", "AMD", "AMZN", "INTC", "AAPL")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMD" "AMZN" "INTC" "NVDA"
#weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMD 0.25
## 3 AMZN 0.2
## 4 INTC 0.2
## 5 NVDA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalence_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.00352
## 2 2013-02-28 -0.0137
## 3 2013-03-28 0.0194
## 4 2013-04-30 0.0434
## 5 2013-05-31 0.124
## 6 2013-06-28 -0.0138
## 7 2013-07-31 0.00425
## 8 2013-08-30 -0.0522
## 9 2013-09-30 0.0750
## 10 2013-10-31 0.0180
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "NVDA",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.445
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color =
tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
There is not a strong linear relationship with the beta coefficient. The scatter plot shows that the dots are very spread out and do not really confer with the line, meaning that the beta coefficient is not confirmed by the plot