# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
fro = "2012-12-31",
to = "2024-12-31")
asset_returns_tbl1 <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl1 %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
portfolio_returns_tbl1 <- asset_returns_tbl1 %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
market_returns_tbl1 <- tq_get(x = "SPY",
get = "stock.prices",
fro = "2012-12-31",
to = "2024-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log", col_rename = "returns") %>%
slice(-1)
market_returns_tbl1
## # A tibble: 143 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0499
## 2 2013-02-28 0.0127
## 3 2013-03-28 0.0373
## 4 2013-04-30 0.0190
## 5 2013-05-31 0.0233
## 6 2013-06-28 -0.0134
## 7 2013-07-31 0.0504
## 8 2013-08-30 -0.0305
## 9 2013-09-30 0.0312
## 10 2013-10-31 0.0453
## # ℹ 133 more rows
portfolio_market_returns_tbl1 <- left_join(market_returns_tbl1, portfolio_returns_tbl1, by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl1
## # A tibble: 143 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0499 0.0204
## 2 2013-02-28 0.0127 -0.00239
## 3 2013-03-28 0.0373 0.0121
## 4 2013-04-30 0.0190 0.0174
## 5 2013-05-31 0.0233 -0.0128
## 6 2013-06-28 -0.0134 -0.0247
## 7 2013-07-31 0.0504 0.0321
## 8 2013-08-30 -0.0305 -0.0224
## 9 2013-09-30 0.0312 0.0511
## 10 2013-10-31 0.0453 0.0301
## # ℹ 133 more rows
portfolio_market_returns_tbl1 %>%
tq_performance(Ra = portfolio_returns, Rb = market_returns, performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.742
portfolio_market_returns_tbl1 %>%
ggplot(aes(x = market_returns, y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE, size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My portfolio is less volatile than the market. The Beta coefficient is .742, meaning the portfolio is around 25% less volatile than the market. For an aggressive investor, a Beta above 1 would be sought after. Since this portfolio is below 1, it would me more suited for conservative investors. This means that if the market moved 10%, the portfolio would move 7.42%. While it may not be the most aggressive returns, in down times, this would help the investor. The plot does confirm the beta coefficient calculated. As we can see, the line trends upwards as market returns increase. This would be the case if the beta were negative. More specifically, we can see that for specific market returns, the portfolio returns are below by a bit, however, still positive.