# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
“MSFT”, “AAPL”, “F”, “JPM”, “SBUX” Baseline “SPY” from 2012-12-31 to present
symbols <- c("MSFT", "AAPL", "F", "JPM", "SBUX")
prices <- tq_get(x = symbols,
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period. = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "F" "JPM" "MSFT" "SBUX"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigts = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 143 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.000198
## 2 2013-02-28 -0.00229
## 3 2013-03-28 0.0162
## 4 2013-04-30 0.0584
## 5 2013-05-31 0.0744
## 6 2013-06-28 -0.0293
## 7 2013-07-31 0.0580
## 8 2013-08-30 -0.00248
## 9 2013-09-30 0.0252
## 10 2013-10-31 0.0460
## # ℹ 133 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to return
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl, by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.08
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
The portfolio’s sensitivity to the market, as represented by the beta coefficient, is 1.08. This indicates that the portfolio’s returns tend to move 1.08 times the magnitude of the market’s returns, suggesting the portfolio is highly correlated with the market. The plot confirms this high positive correlation, as the data points closely follow the upward-sloping trend line.