data science with R/Julia/Python

kuch to shikha

Author

kirit ved

Published

July 8, 2024

Modified

November 6, 2024

data science with R

R setup

 [1] "knitr"      "rmarkdown"  "Boruta"     "vip"        "outliers"  
 [6] "mice"       "missForest" "lubridate"  "forcats"    "stringr"   
[11] "dplyr"      "purrr"      "readr"      "tidyr"      "tibble"    
[16] "ggplot2"    "tidyverse"  "janitor"    "pacman"    

loading dataset

sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 NA
4.7 3.2 1.3 0.2 setosa
NA 3.1 1.5 0.2 setosa
5.0 3.6 NA 0.2 NA
5.4 3.9 1.7 0.4 setosa
4.6 3.4 NA 0.3 setosa
5.0 3.4 1.5 0.2 NA
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 NA setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 NA 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 NA 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 NA
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 NA 0.2 setosa
5.0 3.4 1.6 0.4 NA
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 NA NA
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 NA 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 NA 1.4 0.2 NA
4.9 3.1 1.5 NA setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
NA 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 NA 0.2 NA
5.0 3.5 1.6 0.6 setosa
5.1 NA 1.9 NA NA
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
4.9 NA NA NA versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 NA versicolor
5.0 2.0 3.5 NA NA
5.9 NA 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 NA 1.3 NA
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 NA
5.8 NA 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
NA NA 4.8 1.8 versicolor
6.1 2.8 4.0 NA versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
NA 2.9 NA 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 NA 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 NA 5.1 NA versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 NA
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.0 2.3 3.3 1.0 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 NA
5.7 2.9 4.2 1.3 versicolor
NA NA 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 NA 1.3 versicolor
NA 3.3 6.0 2.5 virginica
5.8 2.7 5.1 NA virginica
NA 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
4.9 2.5 4.5 1.7 virginica
NA NA 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 NA NA
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 NA virginica
6.0 NA 5.0 1.5 NA
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
NA 2.8 6.7 NA virginica
6.3 2.7 NA NA virginica
6.7 3.3 5.7 2.1 virginica
7.2 NA 6.0 1.8 NA
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 NA virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
NA 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 NA NA 1.5 virginica
6.1 2.6 5.6 1.4 virginica
NA 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 NA
6.7 3.1 5.6 2.4 NA
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
NA 3.3 5.7 NA virginica
6.7 3.0 5.2 2.3 virginica
6.3 NA 5.0 1.9 virginica
6.5 NA 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
'data.frame':   150 obs. of  5 variables:
 $ sepal_length: num  5.1 4.9 4.7 NA 5 5.4 4.6 5 4.4 4.9 ...
 $ sepal_width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ petal_length: num  1.4 1.4 1.3 1.5 NA 1.7 NA 1.5 1.4 1.5 ...
 $ petal_width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 NA ...
 $ species     : Factor w/ 3 levels "setosa","versicolor",..: 1 NA 1 1 NA 1 1 NA 1 1 ...
sepal_length  sepal_width petal_length  petal_width      species 
          12           16           12           16           19 
  [1] 0 1 0 1 2 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 2 0 0 1 0 2 1 0 0
 [38] 0 0 0 1 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 2 1 0 0 2 0 1 1 0 0 2 1 0 0
 [75] 0 0 0 0 2 0 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 1 1 1 1 0 0 0 0 2 0 0 2
[112] 0 0 0 0 0 0 0 1 2 0 0 2 2 0 2 0 1 0 0 1 0 0 2 0 1 0 0 0 1 1 0 0 0 2 0 1 1
[149] 0 0

forecasting with r

[1] "BAJAJHIND.NS"

removing missing values using mice package


 iter imp variable
  1   1  sepal_length  sepal_width  petal_length  petal_width  species
  1   2  sepal_length  sepal_width  petal_length  petal_width  species
  1   3  sepal_length  sepal_width  petal_length  petal_width  species
  1   4  sepal_length  sepal_width  petal_length  petal_width  species
  1   5  sepal_length  sepal_width  petal_length  petal_width  species
  2   1  sepal_length  sepal_width  petal_length  petal_width  species
  2   2  sepal_length  sepal_width  petal_length  petal_width  species
  2   3  sepal_length  sepal_width  petal_length  petal_width  species
  2   4  sepal_length  sepal_width  petal_length  petal_width  species
  2   5  sepal_length  sepal_width  petal_length  petal_width  species
  3   1  sepal_length  sepal_width  petal_length  petal_width  species
  3   2  sepal_length  sepal_width  petal_length  petal_width  species
  3   3  sepal_length  sepal_width  petal_length  petal_width  species
  3   4  sepal_length  sepal_width  petal_length  petal_width  species
  3   5  sepal_length  sepal_width  petal_length  petal_width  species
  4   1  sepal_length  sepal_width  petal_length  petal_width  species
  4   2  sepal_length  sepal_width  petal_length  petal_width  species
  4   3  sepal_length  sepal_width  petal_length  petal_width  species
  4   4  sepal_length  sepal_width  petal_length  petal_width  species
  4   5  sepal_length  sepal_width  petal_length  petal_width  species
  5   1  sepal_length  sepal_width  petal_length  petal_width  species
  5   2  sepal_length  sepal_width  petal_length  petal_width  species
  5   3  sepal_length  sepal_width  petal_length  petal_width  species
  5   4  sepal_length  sepal_width  petal_length  petal_width  species
  5   5  sepal_length  sepal_width  petal_length  petal_width  species
sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
5.0 3.1 1.5 0.2 setosa
5.0 3.6 1.9 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.6 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 4.0 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.4 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.6 setosa
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 3.9 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 3.9 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
5.0 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 1.4 0.2 setosa
5.0 3.5 1.6 0.6 setosa
5.1 2.6 1.9 0.1 setosa
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
4.9 2.3 3.3 1.0 versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 1.0 versicolor
5.0 2.0 3.5 1.0 versicolor
5.9 3.0 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 4.2 1.3 versicolor
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 versicolor
5.8 2.6 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
6.8 3.1 4.8 1.8 versicolor
6.1 2.8 4.0 1.5 versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
5.2 2.9 3.5 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 3.8 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 2.8 5.1 1.4 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.0 2.3 3.3 1.0 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 versicolor
5.7 2.9 4.2 1.3 versicolor
5.8 2.5 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 4.0 1.3 versicolor
7.2 3.3 6.0 2.5 virginica
5.8 2.7 5.1 2.0 virginica
6.9 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica
4.9 2.5 4.5 1.7 virginica
7.6 3.0 6.3 1.8 virginica
6.7 2.5 5.8 1.8 virginica
7.2 3.6 6.1 2.5 virginica
6.5 3.2 5.1 1.8 virginica
6.4 2.7 5.3 1.9 virginica
6.8 3.0 5.5 2.1 virginica
5.7 2.5 5.0 2.0 virginica
5.8 2.8 5.1 2.4 virginica
6.4 3.2 5.3 2.3 virginica
6.5 3.0 5.5 1.8 virginica
7.7 3.8 6.7 2.2 virginica
7.7 2.6 6.9 2.3 virginica
6.0 2.6 5.0 1.5 virginica
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.2 2.8 6.7 2.3 virginica
6.3 2.7 5.0 1.5 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.1 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.9 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
6.7 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.7 5.0 1.5 virginica
6.1 2.6 5.6 1.4 virginica
6.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.9 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 3.0 5.0 1.9 virginica
6.5 3.1 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica
sepal_length  sepal_width petal_length  petal_width      species 
           0            0            0            0            0 
  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0
species cnt
setosa 50
versicolor 50
virginica 50

removing outliers

  sepal_length    sepal_width     petal_length    petal_width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.300   Median :1.300  
 Mean   :5.837   Mean   :3.054   Mean   :3.759   Mean   :1.198  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       species  
 setosa    :50  
 versicolor:50  
 virginica :50  
                
                
                
       sepal_length sepal_width petal_length petal_width
  [1,]          5.1         3.5          1.4         0.2
  [2,]          4.9         3.0          1.4         0.2
  [3,]          4.7         3.2          1.3         0.2
  [4,]          5.0         3.1          1.5         0.2
  [5,]          5.0         3.6          1.9         0.2
  [6,]          5.4         3.9          1.7         0.4
  [7,]          4.6         3.4          1.4         0.3
  [8,]          5.0         3.4          1.5         0.2
  [9,]          4.4         2.9          1.4         0.2
 [10,]          4.9         3.1          1.5         0.2
 [11,]          5.4         3.7          1.5         0.2
 [12,]          4.8         3.4          1.6         0.2
 [13,]          4.8         3.0          1.6         0.1
 [14,]          4.3         3.0          1.1         0.1
 [15,]          5.8         4.0          1.2         0.2
 [16,]          5.7         2.8          1.5         0.4
 [17,]          5.4         3.9          1.3         0.4
 [18,]          5.1         3.5          1.4         0.3
 [19,]          5.7         4.0          1.7         0.3
 [20,]          5.1         3.8          1.5         0.3
 [21,]          5.4         3.4          1.7         0.2
 [22,]          5.1         3.7          1.5         0.4
 [23,]          4.6         3.6          1.0         0.2
 [24,]          5.1         3.3          1.7         0.5
 [25,]          4.8         3.4          1.9         0.2
 [26,]          5.0         3.0          1.4         0.2
 [27,]          5.0         3.4          1.6         0.4
 [28,]          5.2         3.5          1.5         0.2
 [29,]          5.2         3.4          1.4         0.6
 [30,]          4.7         3.2          1.6         0.2
 [31,]          4.8         3.1          1.6         0.2
 [32,]          5.4         3.9          1.5         0.4
 [33,]          5.2         2.8          1.5         0.1
 [34,]          5.5         3.9          1.4         0.2
 [35,]          4.9         3.1          1.5         0.2
 [36,]          5.0         3.2          1.2         0.2
 [37,]          5.5         3.5          1.3         0.2
 [38,]          4.9         3.6          1.4         0.1
 [39,]          4.4         3.0          1.3         0.2
 [40,]          5.1         3.4          1.5         0.2
 [41,]          5.0         3.5          1.3         0.3
 [42,]          4.5         2.3          1.3         0.3
 [43,]          4.4         3.2          1.4         0.2
 [44,]          5.0         3.5          1.6         0.6
 [45,]          5.1         2.6          1.9         0.1
 [46,]          4.8         3.0          1.4         0.3
 [47,]          5.1         3.8          1.6         0.2
 [48,]          4.6         3.2          1.4         0.2
 [49,]          5.3         3.7          1.5         0.2
 [50,]          5.0         3.3          1.4         0.2
 [51,]          7.0         3.2          4.7         1.4
 [52,]          6.4         3.2          4.5         1.5
 [53,]          6.9         3.1          4.9         1.5
 [54,]          5.5         2.3          4.0         1.3
 [55,]          6.5         2.8          4.6         1.5
 [56,]          5.7         2.8          4.5         1.3
 [57,]          6.3         3.3          4.7         1.6
 [58,]          4.9         2.3          3.3         1.0
 [59,]          6.6         2.9          4.6         1.3
 [60,]          5.2         2.7          3.9         1.0
 [61,]          5.0         2.8          3.5         1.0
 [62,]          5.9         3.0          4.2         1.5
 [63,]          6.0         2.2          4.0         1.0
 [64,]          6.1         2.9          4.7         1.4
 [65,]          5.6         2.9          4.2         1.3
 [66,]          6.7         3.1          4.4         1.4
 [67,]          5.6         3.0          4.5         1.5
 [68,]          5.8         2.6          4.1         1.0
 [69,]          6.2         2.2          4.5         1.5
 [70,]          5.6         2.5          3.9         1.1
 [71,]          6.8         3.1          4.8         1.8
 [72,]          6.1         2.8          4.0         1.5
 [73,]          6.3         2.5          4.9         1.5
 [74,]          6.1         2.8          4.7         1.2
 [75,]          6.4         2.9          4.3         1.3
 [76,]          6.6         3.0          4.4         1.4
 [77,]          6.8         2.8          4.8         1.4
 [78,]          6.7         3.0          5.0         1.7
 [79,]          5.2         2.9          3.5         1.5
 [80,]          5.7         2.6          3.5         1.0
 [81,]          5.5         2.4          3.8         1.1
 [82,]          5.5         2.4          3.8         1.0
 [83,]          5.8         2.7          3.9         1.2
 [84,]          6.0         2.8          5.1         1.4
 [85,]          5.4         3.0          4.5         1.5
 [86,]          6.0         3.4          4.5         1.6
 [87,]          6.7         3.1          4.7         1.5
 [88,]          6.3         2.3          4.4         1.3
 [89,]          5.6         3.0          4.1         1.3
 [90,]          5.5         2.5          4.0         1.3
 [91,]          5.5         2.6          4.4         1.2
 [92,]          6.1         3.0          4.6         1.4
 [93,]          5.8         2.6          4.0         1.2
 [94,]          5.0         2.3          3.3         1.0
 [95,]          5.6         2.7          4.2         1.3
 [96,]          5.7         3.0          4.2         1.2
 [97,]          5.7         2.9          4.2         1.3
 [98,]          5.8         2.5          4.3         1.3
 [99,]          5.1         2.5          3.0         1.1
[100,]          5.7         2.8          4.0         1.3
[101,]          7.2         3.3          6.0         2.5
[102,]          5.8         2.7          5.1         2.0
[103,]          6.9         3.0          5.9         2.1
[104,]          6.3         2.9          5.6         1.8
[105,]          6.5         3.0          5.8         2.2
[106,]          7.6         3.0          6.6         2.1
[107,]          4.9         2.5          4.5         1.7
[108,]          7.6         3.0          6.3         1.8
[109,]          6.7         2.5          5.8         1.8
[110,]          7.2         3.6          6.1         2.5
[111,]          6.5         3.2          5.1         1.8
[112,]          6.4         2.7          5.3         1.9
[113,]          6.8         3.0          5.5         2.1
[114,]          5.7         2.5          5.0         2.0
[115,]          5.8         2.8          5.1         2.4
[116,]          6.4         3.2          5.3         2.3
[117,]          6.5         3.0          5.5         1.8
[118,]          7.7         3.8          6.7         2.2
[119,]          7.7         2.6          6.9         2.3
[120,]          6.0         2.6          5.0         1.5
[121,]          6.9         3.2          5.7         2.3
[122,]          5.6         2.8          4.9         2.0
[123,]          7.2         2.8          6.7         2.3
[124,]          6.3         2.7          5.0         1.5
[125,]          6.7         3.3          5.7         2.1
[126,]          7.2         3.1          6.0         1.8
[127,]          6.2         2.8          4.8         1.8
[128,]          6.1         3.0          4.9         1.9
[129,]          6.4         2.8          5.6         2.1
[130,]          7.2         3.0          5.8         1.6
[131,]          6.7         2.8          6.1         1.9
[132,]          7.9         3.8          6.4         2.0
[133,]          6.4         2.8          5.6         2.2
[134,]          6.3         2.7          5.0         1.5
[135,]          6.1         2.6          5.6         1.4
[136,]          6.7         3.0          6.1         2.3
[137,]          6.3         3.4          5.6         2.4
[138,]          6.4         3.1          5.5         1.8
[139,]          6.0         3.0          4.8         1.8
[140,]          6.9         3.1          5.4         2.1
[141,]          6.7         3.1          5.6         2.4
[142,]          6.9         3.1          5.1         2.3
[143,]          5.8         2.7          5.1         1.9
[144,]          6.8         3.2          5.9         2.3
[145,]          6.9         3.3          5.7         2.5
[146,]          6.7         3.0          5.2         2.3
[147,]          6.3         3.0          5.0         1.9
[148,]          6.5         3.1          5.2         2.0
[149,]          6.2         3.4          5.4         2.3
[150,]          5.9         3.0          5.1         1.8

variable importance

Boruta performed 9 iterations in 0.2404349 secs.
 4 attributes confirmed important: petal_length, petal_width,
sepal_length, sepal_width;
 No attributes deemed unimportant.
              Length Class    Mode     
finalDecision  4     factor   numeric  
ImpHistory    63     -none-   numeric  
pValue         1     -none-   numeric  
maxRuns        1     -none-   numeric  
light          1     -none-   logical  
mcAdj          1     -none-   logical  
timeTaken      1     difftime numeric  
roughfixed     1     -none-   logical  
call           3     -none-   call     
impSource      1     -none-   character
meanImp medianImp minImp maxImp normHits decision
petal_length 31.95207 32.07526 30.31581 33.17381 1 Confirmed
petal_width 30.64759 30.12608 29.29565 33.41465 1 Confirmed
sepal_length 15.34600 15.05829 14.44868 16.39415 1 Confirmed
sepal_width 10.98677 10.65324 10.31884 12.53375 1 Confirmed

Linear regression using R

x y
1 8.366832
2 12.746207
3 17.494133
4 20.141324
5 24.574645
6 23.964041
7 29.850902
8 32.902596
9 35.351320
10 35.838560
          x         y
x 1.0000000 0.9878864
y 0.9878864 1.0000000

Call:
lm(formula = y ~ x, data = d)

Residuals:
   Min     1Q Median     3Q    Max 
-2.222 -1.415  0.526  1.071  2.000 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)    7.088      1.067   6.641 0.000162 ***
x              3.097      0.172  18.006 9.28e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.562 on 8 degrees of freedom
Multiple R-squared:  0.9759,    Adjusted R-squared:  0.9729 
F-statistic: 324.2 on 1 and 8 DF,  p-value: 9.284e-08
List of 12
 $ coefficients : Named num [1:2] 7.09 3.1
  ..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
 $ residuals    : Named num [1:10] -1.819 -0.537 1.114 0.664 2 ...
  ..- attr(*, "names")= chr [1:10] "1" "2" "3" "4" ...
 $ effects      : Named num [1:10] -76.28 28.13 1.56 1.1 2.43 ...
  ..- attr(*, "names")= chr [1:10] "(Intercept)" "x" "" "" ...
 $ rank         : int 2
 $ fitted.values: Named num [1:10] 10.2 13.3 16.4 19.5 22.6 ...
  ..- attr(*, "names")= chr [1:10] "1" "2" "3" "4" ...
 $ assign       : int [1:2] 0 1
 $ qr           :List of 5
  ..$ qr   : num [1:10, 1:2] -3.162 0.316 0.316 0.316 0.316 ...
  .. ..- attr(*, "dimnames")=List of 2
  .. .. ..$ : chr [1:10] "1" "2" "3" "4" ...
  .. .. ..$ : chr [1:2] "(Intercept)" "x"
  .. ..- attr(*, "assign")= int [1:2] 0 1
  ..$ qraux: num [1:2] 1.32 1.27
  ..$ pivot: int [1:2] 1 2
  ..$ tol  : num 1e-07
  ..$ rank : int 2
  ..- attr(*, "class")= chr "qr"
 $ df.residual  : int 8
 $ xlevels      : Named list()
 $ call         : language lm(formula = y ~ x, data = d)
 $ terms        :Classes 'terms', 'formula'  language y ~ x
  .. ..- attr(*, "variables")= language list(y, x)
  .. ..- attr(*, "factors")= int [1:2, 1] 0 1
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:2] "y" "x"
  .. .. .. ..$ : chr "x"
  .. ..- attr(*, "term.labels")= chr "x"
  .. ..- attr(*, "order")= int 1
  .. ..- attr(*, "intercept")= int 1
  .. ..- attr(*, "response")= int 1
  .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
  .. ..- attr(*, "predvars")= language list(y, x)
  .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
  .. .. ..- attr(*, "names")= chr [1:2] "y" "x"
 $ model        :'data.frame':  10 obs. of  2 variables:
  ..$ y: num [1:10] 8.37 12.75 17.49 20.14 24.57 ...
  ..$ x: num [1:10] 1 2 3 4 5 6 7 8 9 10
  ..- attr(*, "terms")=Classes 'terms', 'formula'  language y ~ x
  .. .. ..- attr(*, "variables")= language list(y, x)
  .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
  .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. ..$ : chr [1:2] "y" "x"
  .. .. .. .. ..$ : chr "x"
  .. .. ..- attr(*, "term.labels")= chr "x"
  .. .. ..- attr(*, "order")= int 1
  .. .. ..- attr(*, "intercept")= int 1
  .. .. ..- attr(*, "response")= int 1
  .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
  .. .. ..- attr(*, "predvars")= language list(y, x)
  .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
  .. .. .. ..- attr(*, "names")= chr [1:2] "y" "x"
 - attr(*, "class")= chr "lm"
x
5.5
9.3
x py
5.5 24.12306
9.3 35.89250

histogram with normal density curve in R

data science with Julia

Julia setup

nothing to add
nothing to add
glfw initialised

sample project

masti with Julia

-5:1:5
my (generic function with 1 method)
Plots.GRBackend()

working with dataframes

TaskLocalRNG()
6×2 DataFrame
 Row │ popat1     popat2
     │ Float64    Float64
─────┼─────────────────────
   1 │ 0.0491718  0.944318
   2 │ 0.119079   0.46105
   3 │ 0.393271   0.830334
   4 │ 0.0240943  0.573132
   5 │ 0.691857   0.176625
   6 │ 0.767518   0.114935
2×7 DataFrame
 Row │ variable  mean      min        median    max       nmissing  eltype
     │ Symbol    Float64   Float64    Float64   Float64   Int64     DataType
─────┼───────────────────────────────────────────────────────────────────────
   1 │ popat1    0.445195  0.0240943  0.527348  0.855718         0  Float64
   2 │ popat2    0.524112  0.114935   0.517091  0.944318         0  Float64
[0.0491718221481211, 0.11907881640750706, 0.3932710232252806, 0.024094310524527707, 0.6918572875342215, 0.7675180540873912, 0.08725304891274233, 0.8557176841095734, 0.8025607099234905, 0.661425351684768]
[0.0491718221481211, 0.11907881640750706, 0.3932710232252806, 0.024094310524527707, 0.6918572875342215, 0.7675180540873912, 0.08725304891274233, 0.8557176841095734, 0.8025607099234905, 0.661425351684768]
["popat1", "popat2"]
10×2 DataFrame
 Row │ popat1     popat2
     │ Float64    Float64
─────┼─────────────────────
   1 │ 0.0491718  0.944318
   2 │ 0.119079   0.46105
   3 │ 0.393271   0.830334
   4 │ 0.0240943  0.573132
   5 │ 0.691857   0.176625
   6 │ 0.767518   0.114935
   7 │ 0.087253   0.7864
   8 │ 0.855718   0.892598
   9 │ 0.802561   0.207253
  10 │ 0.661425   0.254472
10×2 DataFrame
 Row │ popat1     popat2
     │ Float64    Float64
─────┼─────────────────────
   1 │ 0.0491718  0.944318
   2 │ 0.119079   0.46105
   3 │ 0.393271   0.830334
   4 │ 0.0240943  0.573132
   5 │ 0.691857   0.176625
   6 │ 0.767518   0.114935
   7 │ 0.087253   0.7864
   8 │ 0.855718   0.892598
   9 │ 0.802561   0.207253
  10 │ 0.661425   0.254472

solving small linear equation

[1 1; 1 -1]
[10, 5]
2-element Vector{Float64}:
 7.5
 2.5
[7.5, 2.5]

solving large linear equation

4.740436406477113
-2.7048316242181025
8.84445031591571
-12.18760403297759
-10.760104744507274
-0.6370867741423903
2.92433835274419
3.763709603261683
3.188440276898675
18.76174192711995
10×1 Matrix{Float64}:
  2.220446049250313e-16
 -1.6653345369377348e-15
  3.4416913763379853e-15
 -1.1102230246251565e-16
 -1.3877787807814457e-16
 -9.992007221626409e-16
  1.4432899320127035e-15
 -2.220446049250313e-15
  2.2620794126737565e-15
 -6.661338147750939e-16
2.220446049250313e-16
-1.6653345369377348e-15
3.4416913763379853e-15
-1.1102230246251565e-16
-1.3877787807814457e-16
-9.992007221626409e-16
1.4432899320127035e-15
-2.220446049250313e-15
2.2620794126737565e-15
-6.661338147750939e-16

histogram with frequency & density

Normal{Float64}(μ=100.0, σ=10.0)
1000-element Vector{Float64}:
 107.14239454177303
 112.15416632163475
 122.50508395669189
  89.69436513203053
  87.6361252843894
  91.1750826426113
 110.72775710668704
  90.05507424672686
  94.24706740996659
 107.40201249783048
   ⋮
 103.02805925456413
 124.58899439180635
  94.98397866596254
  80.01139491277324
  82.92420298648162
 101.55509941876329
  91.3235805424571
  95.6705118100269
 103.08985851332379

Plots.Series(RecipesPipeline.DefaultsDict(:plot_object => Plot{Plots.GRBackend() n=1}, :subplot => Subplot{1}, :markershape => :none, :label => "y1", :fillalpha => nothing, :orientation => :vertical, :linealpha => nothing, :x_extrema => (NaN, NaN), :arrow => nothing, :series_index => 1…))
5.0

Linear Regression

4-element Vector{String}:
 "Random"
 "DataFrames"
 "CSV"
 "GLM"
TaskLocalRNG()
10
1:10
my (generic function with 2 methods)
10-element Vector{Float64}:
  8.366831772346464
 12.746207447785931
 17.49413341845734
 20.14132370171251
 24.574645018314158
 23.964040581229376
 29.85090173942833
 32.902596318375934
 35.35131979172247
 35.838560532354634
[8.366831772346464, 12.746207447785931, 17.49413341845734, 20.14132370171251, 24.574645018314158, 23.964040581229376, 29.85090173942833, 32.902596318375934, 35.35131979172247, 35.838560532354634]

"C:\\jr29102024\\tmp.png"
10×2 Matrix{Float64}:
  1.0   8.36683
  2.0  12.7462
  3.0  17.4941
  4.0  20.1413
  5.0  24.5746
  6.0  23.964
  7.0  29.8509
  8.0  32.9026
  9.0  35.3513
 10.0  35.8386
10×2 DataFrame
 Row │ x        y
     │ Float64  Float64
─────┼───────────────────
   1 │     1.0   8.36683
   2 │     2.0  12.7462
   3 │     3.0  17.4941
   4 │     4.0  20.1413
   5 │     5.0  24.5746
   6 │     6.0  23.964
   7 │     7.0  29.8509
   8 │     8.0  32.9026
   9 │     9.0  35.3513
  10 │    10.0  35.8386
10×2 DataFrame
 Row │ x        y
     │ Float64  Float64
─────┼───────────────────
   1 │     1.0   8.36683
   2 │     2.0  12.7462
   3 │     3.0  17.4941
   4 │     4.0  20.1413
   5 │     5.0  24.5746
   6 │     6.0  23.964
   7 │     7.0  29.8509
   8 │     8.0  32.9026
   9 │     9.0  35.3513
  10 │    10.0  35.8386
"tmp.csv"
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}

y ~ 1 + x

Coefficients:
───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)  7.08833     1.06729   6.64    0.0002    4.62715    9.54951
x            3.09722     0.17201  18.01    <1e-07    2.70057    3.49388
───────────────────────────────────────────────────────────────────────
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}, Matrix{Float64}}

y ~ 1 + x

Coefficients:
───────────────────────────────────────────────────────────────────────
               Coef.  Std. Error      t  Pr(>|t|)  Lower 95%  Upper 95%
───────────────────────────────────────────────────────────────────────
(Intercept)  7.08833     1.06729   6.64    0.0002    4.62715    9.54951
x            3.09722     0.17201  18.01    <1e-07    2.70057    3.49388
───────────────────────────────────────────────────────────────────────
[7.088329718063239, 3.097222966201723]
2×1 DataFrame
 Row │ x
     │ Float64
─────┼─────────
   1 │     5.5
   2 │     9.3
2-element Vector{Union{Missing, Float64}}:
 24.123056032172716
 35.89250330373926
Union{Missing, Float64}[24.123056032172716, 35.89250330373926]
2-element Vector{Union{Missing, Float64}}:
 24.123056032172716
 35.89250330373926
2×2 DataFrame
 Row │ x        py
     │ Float64  Float64?
─────┼───────────────────
   1 │     5.5   24.1231
   2 │     9.3   35.8925

histogram with normal density curve in julia

hwnc (generic function with 1 method)
100
10
100
Normal{Float64}(μ=100.0, σ=10.0)
100-element Vector{Float64}:
 111.7802591371556
 103.85511601627927
 104.04152107206976
  98.96424017031497
 105.95319156684396
 104.55470483254561
  92.98082482726603
  87.3291108433959
  98.92129655504161
 107.1833151703558
   ⋮
 108.25303693370215
 102.46148788764755
 110.76246060033249
  89.85041368927503
 100.07460362971408
 112.08620015351264
  92.46866102892267
  94.02111638978063
  98.50938982305627
100
"C:\\jr29102024\\tmp1.png"
100

bhankas with julia

kbv_hwnc (generic function with 1 method)
-5:1:5
kbv1 (generic function with 1 method)
11-element Vector{Int64}:
 -208
 -115
  -52
  -13
    8
   17
   20
   23
   32
   53
   92
Plots.GRBackend()

"C:\\jr29102024\\jup1.png"
TaskLocalRNG()
10000
50
10
10000-element Vector{Float64}:
 50.6193274031408
 52.78405814164
 44.04175584635948
 50.466593895733816
 60.85794021543276
 34.23435077414016
 51.759399913010746
 58.653808054093254
 22.09718994450693
 31.079844417740873
  ⋮
 52.413115928596625
 49.025474847116975
 76.3170646324677
 59.048108777995076
 48.00603105315709
 43.491790609401015
 48.29383789460438
 48.4884742176607
 36.51482096334351

Julia variable importance

method -1

UnivariateFeatureSelector(FeatureSelectors.pearson_correlation, 5, nothing)
5-element Vector{String}:
 "LStat"
 "Rm"
 "PTRatio"
 "Indus"
 "Tax"
5×7 DataFrame
 Row │ variable     mean     min     median  max        nmissing  eltype
     │ Symbol       Union…   Any     Union…  Any        Int64     DataType
─────┼────────────────────────────────────────────────────────────────────────────────────────────
   1 │ SepalLength  5.84333  4.3     5.8     7.9               0  Float64
   2 │ SepalWidth   3.05733  2.0     3.0     4.4               0  Float64
   3 │ PetalLength  3.758    1.0     4.35    6.9               0  Float64
   4 │ PetalWidth   1.19933  0.1     1.3     2.5               0  Float64
   5 │ Species               setosa          virginica         0  CategoricalValue{String, UInt8}
UnivariateFeatureSelector(FeatureSelectors.pearson_correlation, 4, nothing)
4-element Vector{String}:
 "PetalWidth"
 "PetalLength"
 "SepalLength"
 "SepalWidth"
["PetalWidth", "PetalLength", "SepalLength", "SepalWidth"]

method-2

test julia

5.6---60.16

data visualisation with julia

150×5 DataFrame
 Row │ SepalLength  SepalWidth  PetalLength  PetalWidth  Species
     │ Float64      Float64     Float64      Float64     Cat…
─────┼─────────────────────────────────────────────────────────────
   1 │         5.1         3.5          1.4         0.2  setosa
   2 │         4.9         3.0          1.4         0.2  setosa
   3 │         4.7         3.2          1.3         0.2  setosa
   4 │         4.6         3.1          1.5         0.2  setosa
   5 │         5.0         3.6          1.4         0.2  setosa
   6 │         5.4         3.9          1.7         0.4  setosa
   7 │         4.6         3.4          1.4         0.3  setosa
   8 │         5.0         3.4          1.5         0.2  setosa
  ⋮  │      ⋮           ⋮            ⋮           ⋮           ⋮
 144 │         6.8         3.2          5.9         2.3  virginica
 145 │         6.7         3.3          5.7         2.5  virginica
 146 │         6.7         3.0          5.2         2.3  virginica
 147 │         6.3         2.5          5.0         1.9  virginica
 148 │         6.5         3.0          5.2         2.0  virginica
 149 │         6.2         3.4          5.4         2.3  virginica
 150 │         5.9         3.0          5.1         1.8  virginica
                                                   135 rows omitted
Plots.GRBackend()
"C:\\jr29102024\\q1.png"

3×2 DataFrame
 Row │ Species     Count
     │ Cat…        Int64
─────┼───────────────────
   1 │ setosa         50
   2 │ versicolor     50
   3 │ virginica      50
3-element Vector{Float64}:
 33.333333333333336
 33.333333333333336
 33.333333333333336
3×3 DataFrame
 Row │ Species     Count  pct
     │ Cat…        Int64  Float64
─────┼────────────────────────────
   1 │ setosa         50  33.3333
   2 │ versicolor     50  33.3333
   3 │ virginica      50  33.3333
my_round (generic function with 2 methods)
3-element CategoricalArray{String,1,UInt8}:
 "setosa"
 "versicolor"
 "virginica"
3-element Vector{Int64}:
 50
 50
 50
3-element Vector{Float64}:
 33.333333333333336
 33.333333333333336
 33.333333333333336
3-element Vector{Float64}:
 33.33
 33.33
 33.33

3-element Vector{Float64}:
 33.333333333333336
 33.333333333333336
 33.333333333333336
3-element Vector{Float64}:
 33.33
 33.33
 33.33
3-element Vector{Float64}:
 0.0
 0.0
 0.0
3-element Vector{Float64}:
 0.0
 0.0
 0.0

3-element Vector{Float64}:
  60.0
 180.00000000000003
 300.0
3-element Vector{Tuple{Float64, Float64}}:
 (0.8660254037844386, 0.5)
 (-4.960524086056721e-16, -1.0)
 (-0.8660254037844386, 0.5)
zip([33.33, 33.33, 33.33], [(0.8660254037844386, 0.5), (-4.960524086056721e-16, -1.0), (-0.8660254037844386, 0.5)])

lp with julia

A JuMP Model
├ solver: GLPK
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none
x
y
12 x + 20 y
x + y <= 100
2 x + 3 y <= 120
y <= 30
Max 12 x + 20 y
Subject to
 x + y <= 100
 2 x + 3 y <= 120
 y <= 30
 x >= 0
 y >= 0
Optimal solution:
objective value is 780.0
x = 15.0
y = 30.0

rndom forest dt mining with julia

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3][1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3][0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

0.9333333333333333

decision tree using julia


########################
difeerent models in mlj 
########################
1---ABODDetector---OutlierDetectionNeighbors
2---ABODDetector---OutlierDetectionPython
3---ARDRegressor---MLJScikitLearnInterface
4---AdaBoostClassifier---MLJScikitLearnInterface
5---AdaBoostRegressor---MLJScikitLearnInterface
6---AdaBoostStumpClassifier---DecisionTree
7---AffinityPropagation---MLJScikitLearnInterface
8---AgglomerativeClustering---MLJScikitLearnInterface
9---AutoEncoder---BetaML
10---BM25Transformer---MLJText
11---BaggingClassifier---MLJScikitLearnInterface
12---BaggingRegressor---MLJScikitLearnInterface
13---BayesianLDA---MLJScikitLearnInterface
14---BayesianLDA---MultivariateStats
15---BayesianQDA---MLJScikitLearnInterface
16---BayesianRidgeRegressor---MLJScikitLearnInterface
17---BayesianSubspaceLDA---MultivariateStats
18---BernoulliNBClassifier---MLJScikitLearnInterface
19---Birch---MLJScikitLearnInterface
20---BisectingKMeans---MLJScikitLearnInterface
21---BorderlineSMOTE1---Imbalance
22---CBLOFDetector---OutlierDetectionPython
23---CDDetector---OutlierDetectionPython
24---COFDetector---OutlierDetectionNeighbors
25---COFDetector---OutlierDetectionPython
26---COPODDetector---OutlierDetectionPython
27---CatBoostClassifier---CatBoost
28---CatBoostRegressor---CatBoost
29---ClusterUndersampler---Imbalance
30---ComplementNBClassifier---MLJScikitLearnInterface
31---ConstantClassifier---MLJModels
32---ConstantRegressor---MLJModels
33---ContinuousEncoder---MLJModels
34---CountTransformer---MLJText
35---DBSCAN---Clustering
36---DBSCAN---MLJScikitLearnInterface
37---DNNDetector---OutlierDetectionNeighbors
38---DecisionTreeClassifier---BetaML
39---DecisionTreeClassifier---DecisionTree
40---DecisionTreeRegressor---BetaML
41---DecisionTreeRegressor---DecisionTree
42---DeterministicConstantClassifier---MLJModels
43---DeterministicConstantRegressor---MLJModels
44---DummyClassifier---MLJScikitLearnInterface
45---DummyRegressor---MLJScikitLearnInterface
46---ECODDetector---OutlierDetectionPython
47---ENNUndersampler---Imbalance
48---ElasticNetCVRegressor---MLJScikitLearnInterface
49---ElasticNetRegressor---MLJLinearModels
50---ElasticNetRegressor---MLJScikitLearnInterface
51---EpsilonSVR---LIBSVM
52---EvoLinearRegressor---EvoLinear
53---EvoSplineRegressor---EvoLinear
54---EvoTreeClassifier---EvoTrees
55---EvoTreeCount---EvoTrees
56---EvoTreeGaussian---EvoTrees
57---EvoTreeMLE---EvoTrees
58---EvoTreeRegressor---EvoTrees
59---ExtraTreesClassifier---MLJScikitLearnInterface
60---ExtraTreesRegressor---MLJScikitLearnInterface
61---FactorAnalysis---MultivariateStats
62---FeatureAgglomeration---MLJScikitLearnInterface
63---FeatureSelector---MLJModels
64---FillImputer---MLJModels
65---GMMDetector---OutlierDetectionPython
66---GaussianMixtureClusterer---BetaML
67---GaussianMixtureImputer---BetaML
68---GaussianMixtureRegressor---BetaML
69---GaussianNBClassifier---MLJScikitLearnInterface
70---GaussianNBClassifier---NaiveBayes
71---GaussianProcessClassifier---MLJScikitLearnInterface
72---GaussianProcessRegressor---MLJScikitLearnInterface
73---GeneralImputer---BetaML
74---GradientBoostingClassifier---MLJScikitLearnInterface
75---GradientBoostingRegressor---MLJScikitLearnInterface
76---HBOSDetector---OutlierDetectionPython
77---HDBSCAN---MLJScikitLearnInterface
78---HierarchicalClustering---Clustering
79---HistGradientBoostingClassifier---MLJScikitLearnInterface
80---HistGradientBoostingRegressor---MLJScikitLearnInterface
81---HuberRegressor---MLJLinearModels
82---HuberRegressor---MLJScikitLearnInterface
83---ICA---MultivariateStats
84---IForestDetector---OutlierDetectionPython
85---INNEDetector---OutlierDetectionPython
86---ImageClassifier---MLJFlux
87---InteractionTransformer---MLJModels
88---KDEDetector---OutlierDetectionPython
89---KMeans---Clustering
90---KMeans---MLJScikitLearnInterface
91---KMeans---ParallelKMeans
92---KMeansClusterer---BetaML
93---KMedoids---Clustering
94---KMedoidsClusterer---BetaML
95---KNNClassifier---NearestNeighborModels
96---KNNDetector---OutlierDetectionNeighbors
97---KNNDetector---OutlierDetectionPython
98---KNNRegressor---NearestNeighborModels
99---KNeighborsClassifier---MLJScikitLearnInterface
100---KNeighborsRegressor---MLJScikitLearnInterface
101---KPLSRegressor---PartialLeastSquaresRegressor
102---KernelPCA---MultivariateStats
103---KernelPerceptronClassifier---BetaML
104---LADRegressor---MLJLinearModels
105---LDA---MultivariateStats
106---LGBMClassifier---LightGBM
107---LGBMRegressor---LightGBM
108---LMDDDetector---OutlierDetectionPython
109---LOCIDetector---OutlierDetectionPython
110---LODADetector---OutlierDetectionPython
111---LOFDetector---OutlierDetectionNeighbors
112---LOFDetector---OutlierDetectionPython
113---LarsCVRegressor---MLJScikitLearnInterface
114---LarsRegressor---MLJScikitLearnInterface
115---LassoCVRegressor---MLJScikitLearnInterface
116---LassoLarsCVRegressor---MLJScikitLearnInterface
117---LassoLarsICRegressor---MLJScikitLearnInterface
118---LassoLarsRegressor---MLJScikitLearnInterface
119---LassoRegressor---MLJLinearModels
120---LassoRegressor---MLJScikitLearnInterface
121---LinearBinaryClassifier---GLM
122---LinearCountRegressor---GLM
123---LinearRegressor---GLM
124---LinearRegressor---MLJLinearModels
125---LinearRegressor---MLJScikitLearnInterface
126---LinearRegressor---MultivariateStats
127---LinearSVC---LIBSVM
128---LogisticCVClassifier---MLJScikitLearnInterface
129---LogisticClassifier---MLJLinearModels
130---LogisticClassifier---MLJScikitLearnInterface
131---MCDDetector---OutlierDetectionPython
132---MeanShift---MLJScikitLearnInterface
133---MiniBatchKMeans---MLJScikitLearnInterface
134---MultiTaskElasticNetCVRegressor---MLJScikitLearnInterface
135---MultiTaskElasticNetRegressor---MLJScikitLearnInterface
136---MultiTaskLassoCVRegressor---MLJScikitLearnInterface
137---MultiTaskLassoRegressor---MLJScikitLearnInterface
138---MultinomialClassifier---MLJLinearModels
139---MultinomialNBClassifier---MLJScikitLearnInterface
140---MultinomialNBClassifier---NaiveBayes
141---MultitargetGaussianMixtureRegressor---BetaML
142---MultitargetKNNClassifier---NearestNeighborModels
143---MultitargetKNNRegressor---NearestNeighborModels
144---MultitargetLinearRegressor---MultivariateStats
145---MultitargetNeuralNetworkRegressor---BetaML
146---MultitargetNeuralNetworkRegressor---MLJFlux
147---MultitargetRidgeRegressor---MultivariateStats
148---MultitargetSRRegressor---SymbolicRegression
149---NeuralNetworkClassifier---BetaML
150---NeuralNetworkClassifier---MLJFlux
151---NeuralNetworkRegressor---BetaML
152---NeuralNetworkRegressor---MLJFlux
153---NuSVC---LIBSVM
154---NuSVR---LIBSVM
155---OCSVMDetector---OutlierDetectionPython
156---OPTICS---MLJScikitLearnInterface
157---OneClassSVM---LIBSVM
158---OneHotEncoder---MLJModels
159---OneRuleClassifier---OneRule
160---OrthogonalMatchingPursuitCVRegressor---MLJScikitLearnInterface
161---OrthogonalMatchingPursuitRegressor---MLJScikitLearnInterface
162---PCA---MultivariateStats
163---PCADetector---OutlierDetectionPython
164---PLSRegressor---PartialLeastSquaresRegressor
165---PPCA---MultivariateStats
166---PartLS---PartitionedLS
167---PassiveAggressiveClassifier---MLJScikitLearnInterface
168---PassiveAggressiveRegressor---MLJScikitLearnInterface
169---PegasosClassifier---BetaML
170---PerceptronClassifier---BetaML
171---PerceptronClassifier---MLJScikitLearnInterface
172---ProbabilisticNuSVC---LIBSVM
173---ProbabilisticSGDClassifier---MLJScikitLearnInterface
174---ProbabilisticSVC---LIBSVM
175---QuantileRegressor---MLJLinearModels
176---RANSACRegressor---MLJScikitLearnInterface
177---RODDetector---OutlierDetectionPython
178---ROSE---Imbalance
179---RandomForestClassifier---BetaML
180---RandomForestClassifier---DecisionTree
181---RandomForestClassifier---MLJScikitLearnInterface
182---RandomForestImputer---BetaML
183---RandomForestRegressor---BetaML
184---RandomForestRegressor---DecisionTree
185---RandomForestRegressor---MLJScikitLearnInterface
186---RandomOversampler---Imbalance
187---RandomUndersampler---Imbalance
188---RandomWalkOversampler---Imbalance
189---RidgeCVClassifier---MLJScikitLearnInterface
190---RidgeCVRegressor---MLJScikitLearnInterface
191---RidgeClassifier---MLJScikitLearnInterface
192---RidgeRegressor---MLJLinearModels
193---RidgeRegressor---MLJScikitLearnInterface
194---RidgeRegressor---MultivariateStats
195---RobustRegressor---MLJLinearModels
196---SGDClassifier---MLJScikitLearnInterface
197---SGDRegressor---MLJScikitLearnInterface
198---SMOTE---Imbalance
199---SMOTEN---Imbalance
200---SMOTENC---Imbalance
201---SODDetector---OutlierDetectionPython
202---SOSDetector---OutlierDetectionPython
203---SRRegressor---SymbolicRegression
204---SVC---LIBSVM
205---SVMClassifier---MLJScikitLearnInterface
206---SVMLinearClassifier---MLJScikitLearnInterface
207---SVMLinearRegressor---MLJScikitLearnInterface
208---SVMNuClassifier---MLJScikitLearnInterface
209---SVMNuRegressor---MLJScikitLearnInterface
210---SVMRegressor---MLJScikitLearnInterface
211---SelfOrganizingMap---SelfOrganizingMaps
212---SimpleImputer---BetaML
213---SpectralClustering---MLJScikitLearnInterface
214---StableForestClassifier---SIRUS
215---StableForestRegressor---SIRUS
216---StableRulesClassifier---SIRUS
217---StableRulesRegressor---SIRUS
218---Standardizer---MLJModels
219---SubspaceLDA---MultivariateStats
220---TSVDTransformer---TSVD
221---TfidfTransformer---MLJText
222---TheilSenRegressor---MLJScikitLearnInterface
223---TomekUndersampler---Imbalance
224---UnivariateBoxCoxTransformer---MLJModels
225---UnivariateDiscretizer---MLJModels
226---UnivariateFillImputer---MLJModels
227---UnivariateStandardizer---MLJModels
228---UnivariateTimeTypeToContinuous---MLJModels
229---XGBoostClassifier---XGBoost
230---XGBoostCount---XGBoost
231---XGBoostRegressor---XGBoost

####################################
difeerent classifiers models in mlj 
####################################
1---AdaBoostClassifier---MLJScikitLearnInterface
2---AdaBoostStumpClassifier---DecisionTree
3---BaggingClassifier---MLJScikitLearnInterface
4---BayesianLDA---MLJScikitLearnInterface
5---BayesianLDA---MultivariateStats
6---BayesianQDA---MLJScikitLearnInterface
7---BayesianSubspaceLDA---MultivariateStats
8---CatBoostClassifier---CatBoost
9---ConstantClassifier---MLJModels
10---DecisionTreeClassifier---BetaML
11---DecisionTreeClassifier---DecisionTree
12---DeterministicConstantClassifier---MLJModels
13---DummyClassifier---MLJScikitLearnInterface
14---EvoTreeClassifier---EvoTrees
15---ExtraTreesClassifier---MLJScikitLearnInterface
16---GaussianNBClassifier---MLJScikitLearnInterface
17---GaussianNBClassifier---NaiveBayes
18---GaussianProcessClassifier---MLJScikitLearnInterface
19---GradientBoostingClassifier---MLJScikitLearnInterface
20---HistGradientBoostingClassifier---MLJScikitLearnInterface
21---KNNClassifier---NearestNeighborModels
22---KNeighborsClassifier---MLJScikitLearnInterface
23---KernelPerceptronClassifier---BetaML
24---LDA---MultivariateStats
25---LGBMClassifier---LightGBM
26---LinearSVC---LIBSVM
27---LogisticCVClassifier---MLJScikitLearnInterface
28---LogisticClassifier---MLJLinearModels
29---LogisticClassifier---MLJScikitLearnInterface
30---MultinomialClassifier---MLJLinearModels
31---NeuralNetworkClassifier---BetaML
32---NeuralNetworkClassifier---MLJFlux
33---NuSVC---LIBSVM
34---PassiveAggressiveClassifier---MLJScikitLearnInterface
35---PegasosClassifier---BetaML
36---PerceptronClassifier---BetaML
37---PerceptronClassifier---MLJScikitLearnInterface
38---ProbabilisticNuSVC---LIBSVM
39---ProbabilisticSGDClassifier---MLJScikitLearnInterface
40---ProbabilisticSVC---LIBSVM
41---RandomForestClassifier---BetaML
42---RandomForestClassifier---DecisionTree
43---RandomForestClassifier---MLJScikitLearnInterface
44---RidgeCVClassifier---MLJScikitLearnInterface
45---RidgeClassifier---MLJScikitLearnInterface
46---SGDClassifier---MLJScikitLearnInterface
47---SVC---LIBSVM
48---SVMClassifier---MLJScikitLearnInterface
49---SVMLinearClassifier---MLJScikitLearnInterface
50---SVMNuClassifier---MLJScikitLearnInterface
51---StableForestClassifier---SIRUS
52---StableRulesClassifier---SIRUS
53---SubspaceLDA---MultivariateStats
54---XGBoostClassifier---XGBoost

#############################
mlj deecision tree classifier
#############################
start mlj deecision tree classifier
Accuracy: 0.94
ConfusionMatrix{3}([14 0 0; 0 17 2; 0 1 16])
[14 0 0; 0 17 2; 0 1 16]

#################################
starting random forest classifier
#################################
Accuracy: 0.94
ConfusionMatrix{3}([14 0 0; 0 17 2; 0 1 16])
[14 0 0; 0 17 2; 0 1 16]

######################
mlj xgboost classifier
######################
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 17 1; 0 1 17])
[14 0 0; 0 17 1; 0 1 17]

#######################
mlj adaboost classifier
#######################
Accuracy: 0.9
ConfusionMatrix{3}([14 0 0; 0 17 4; 0 1 14])
[14 0 0; 0 17 4; 0 1 14]

#############################
mlj adaboost stump classifier
#############################
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 17 1; 0 1 17])
[14 0 0; 0 17 1; 0 1 17]

############################
mlj NuSVC libsvm  classifier
############################
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 18 2; 0 0 16])
[14 0 0; 0 18 2; 0 0 16]

##############################
mlj Neural network  classifier
##############################
***
*** Training  for 200 epochs with algorithm ADAM.
Training..   avg loss on epoch 1 (1):    1.8944182288019402
Training of 200 epoch completed. Final epoch error: 2.1567533608672576.
Accuracy: 0.28
ConfusionMatrix{3}([14 18 18; 0 0 0; 0 0 0])
[14 18 18; 0 0 0; 0 0 0]

######################################################
mlj random forest classifer from decision tree package
######################################################
machine(RandomForestClassifier(max_depth = -1, …), …)
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 17 1; 0 1 17])
[14 0 0; 0 17 1; 0 1 17]

###############################
KNeighborsClassifier Classifier
###############################
Accuracy: 0.98
ConfusionMatrix{3}([14 0 0; 0 18 1; 0 0 17])
[14 0 0; 0 18 1; 0 0 17]

################################
using SVC classifier from libsvm
################################
Accuracy: 0.94
ConfusionMatrix{3}([14 0 0; 0 18 3; 0 0 15])
[14 0 0; 0 18 3; 0 0 15]

#########################
using Catboost classifier
#########################
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 17 1; 0 1 17])
[14 0 0; 0 17 1; 0 1 17]

#######################
using PegasosClassifier
#######################
import BetaML ✔
Accuracy: 0.96
ConfusionMatrix{3}([14 0 0; 0 17 1; 0 1 17])
[14 0 0; 0 17 1; 0 1 17]

data mining with decision tree

Test set accuracy: 0.94
Feature 3 < 2.6 ?
├─ 1 : 33/33
└─ Feature 4 < 1.75 ?
    ├─ Feature 3 < 5.35 ?
        ├─ 2 : 31/31
        └─ 3 : 2/2
    └─ Feature 3 < 4.85 ?
        ├─ Feature 2 < 3.1 ?
            ├─ 3 : 2/2
            └─ 2 : 1/1
        └─ 3 : 31/31

plotting with makie

6×3 DataFrame
 Row │ x        y1        y2
     │ Float64  Float64   Float64
─────┼───────────────────────────────
   1 │    -5.0  0.958924   0.283662
   2 │    -4.9  0.982453   0.186512
   3 │    -4.8  0.996165   0.087499
   4 │    -4.7  0.999923  -0.0123887
   5 │    -4.6  0.993691  -0.112153
   6 │    -4.5  0.97753   -0.210796

symbolics math symbolics


#############################
using Symbolics julia package
#############################
using symbolics
-35 + 3x + 5y = 0
x - y = 0
[4.375, 4.375]
-123 - 7x - 5(x^2) + x^3
Differential(x)(-123 - 7x - 5(x^2) + x^3)
-7 - 10x + 3(x^2)
8x + 4(x^2)
x^6 + 6(x^5)*y + 15(x^4)*(y^2) + 20(x^3)*(y^3) + 15(x^2)*(y^4) + 6x*(y^5) + y^6

symbolics math sympy


#########################
using SymPy julia package
#########################

############################
solving non linear equations
############################
1
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 0)
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 1)
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 2)
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 3)
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 4)
CRootOf(x^6 + x^5 + x^4 + x^3 + x^2 + x + 3, 5)
1
-1.1280707714543692 - 0.5876060832247132im
-1.1280707714543692 + 0.5876060832247132im
-0.16403887800672787 - 1.21306844998484im
-0.16403887800672787 + 1.21306844998484im
0.7921096494610971 - 0.7810724308829708im
0.7921096494610971 + 0.7810724308829708im

################################
solving derivative of a function
################################
3*x^2 - 7

#################################
solving integration of a function
#################################
x^4/4 - 7*x^2/2

###########################
solving non linear equation
###########################
-3/((-1/2 - sqrt(3)*I/2)*(27*sqrt(35) + 162)^(1/3)) - (-1/2 - sqrt(3)*I/2)*(27*sqrt(35) + 162)^(1/3)/3
-(-1/2 + sqrt(3)*I/2)*(27*sqrt(35) + 162)^(1/3)/3 - 3/((-1/2 + sqrt(3)*I/2)*(27*sqrt(35) + 162)^(1/3))
-(27*sqrt(35) + 162)^(1/3)/3 - 3/(27*sqrt(35) + 162)^(1/3)
1.3609461421185716 + 1.5989131324879002im
1.3609461421185716 - 1.5989131324879002im
-2.721892284237143

##################################
substituting values in  a function
##################################
2*y^2 + y + 4

####################
expanding expression
####################
x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5
x^4 + 6*x^3 + 11*x^2 + 6*x

#######################
solving three variables
#######################
2
2

trial & error calculations


#####################
iterative calculation
#####################
f1 = 0
1    0.0    -1.0e7    1.0e7    -145.0
2    5.0e6    0.0    1.0e7    1.2499992499997e20
3    2.5e6    0.0    5.0e6    1.5624981249985e19
4    1.25e6    0.0    2.5e6    1.9531203124924997e18
5    625000.0    0.0    1.25e6    2.4413945312124982e17
6    312500.0    0.0    625000.0    3.0517285154374856e16
7    156250.0    0.0    312500.0    3.814624022499855e15
8    78125.0    0.0    156250.0    4.76818847187355e14
9    39062.5    0.0    78125.0    5.9600066904151875e13
10    19531.25    0.0    39062.5    7.449436070411641e12
11    9765.625    0.0    19531.25    9.310364135818066e11
12    4882.8125    0.0    9765.625    1.1634376681132935e11
13    2441.40625    0.0    4882.8125    1.4534019041496735e10
14    1220.703125    0.0    2441.40625    1.8145115859689522e9
15    610.3515625    0.0    1220.703125    2.262522812443185e8
16    305.17578125    0.0    610.3515625    2.8140336603331864e7
17    152.587890625    0.0    305.17578125    3.48180395836059e6
18    76.2939453125    0.0    152.587890625    426024.1479041474
19    38.14697265625    0.0    76.2939453125    50771.69482681027
20    19.073486328125    0.0    38.14697265625    5588.0593438109645
21    9.5367431640625    0.0    19.073486328125    392.2928684721501
22    4.76837158203125    0.0    9.5367431640625    -133.40211487660667
23    7.152557373046875    4.76837158203125    9.5367431640625    24.525658051394885
24    5.9604644775390625    4.76837158203125    7.152557373046875    -75.58596041567432
25    6.556510925292969    5.9604644775390625    7.152557373046875    -31.452358893347537
26    6.854534149169922    6.556510925292969    7.152557373046875    -5.023311687583373
27    7.003545761108398    6.854534149169922    7.152557373046875    9.351256697903352
28    6.92903995513916    6.854534149169922    7.003545761108398    2.065234155078201
29    6.891787052154541    6.854534149169922    6.92903995513916    -1.5035682574081761
30    6.910413503646851    6.891787052154541    6.92903995513916    0.2746811890004892
31    6.901100277900696    6.891787052154541    6.910413503646851    -0.6159790507817888
32    6.905756890773773    6.901100277900696    6.910413503646851    -0.17103311295772983
33    6.908085197210312    6.905756890773773    6.910413503646851    0.05172795463928992
34    6.9069210439920425    6.905756890773773    6.908085197210312    -0.059676595271554334
35    6.907503120601177    6.9069210439920425    6.908085197210312    -0.003980324935838553
36    6.9077941589057446    6.907503120601177    6.908085197210312    0.02387231362286002
37    6.907648639753461    6.907503120601177    6.9077941589057446    0.009945619045481635
38    6.907575880177319    6.907503120601177    6.907648639753461    0.002982553231476004
39    6.907539500389248    6.907503120601177    6.907575880177319    -0.0004989093078791029
40    6.907557690283284    6.907539500389248    6.907575880177319    0.0012418160978882042
41    6.907548595336266    6.907539500389248    6.907557690283284    0.00037145192897014567
42    6.907544047862757    6.907539500389248    6.907548595336266    -6.372905590978917e-5
43    6.907546321599511    6.907544047862757    6.907548595336266    0.00015386134492700876
44    6.907545184731134    6.907544047862757    6.907546321599511    4.5066121600711995e-5
45    6.907544616296946    6.907544047862757    6.907545184731134    -9.331472881513037e-6
46    6.90754490051404    6.907544616296946    6.907545184731134    1.7867322924303153e-5
47    6.907544758405493    6.907544616296946    6.90754490051404    4.2679246519128355e-6
48    6.907544687351219    6.907544616296946    6.907544758405493    -2.531774185854374e-6
49    6.907544722878356    6.907544687351219    6.907544758405493    8.680752330292307e-7
50    6.907544705114788    6.907544687351219    6.907544722878356    -8.318495190451358e-7
51    6.907544713996572    6.907544705114788    6.907544722878356    1.811281435948331e-8
52    6.90754470955568    6.907544705114788    6.907544713996572    -4.068683097102621e-7
53    6.907544711776126    6.90754470955568    6.907544713996572    -1.9437777609709883e-7
54    6.907544712886349    6.907544711776126    6.907544713996572    -8.813245244709833e-8
55    6.90754471344146    6.907544712886349    6.907544713996572    -3.5009804832952796e-8
56    6.907544713719016    6.90754471344146    6.907544713996572    -8.448466815025313e-9
57    6.907544713857794    6.907544713719016    6.907544713996572    4.832173772228998e-9
58    6.907544713788405    6.907544713719016    6.907544713857794    -1.8081323105434421e-9
59    6.9075447138231    6.907544713788405    6.907544713857794    1.5120633634069236e-9
60    6.907544713805752    6.907544713788405    6.9075447138231    -1.4807710613240488e-10
61    6.907544713814426    6.907544713805752    6.9075447138231    6.819789177825442e-10
62    6.907544713810089    6.907544713805752    6.907544713814426    2.6696511667978484e-10
63    6.907544713807921    6.907544713805752    6.907544713810089    5.951505954726599e-11
converged to 6.907544713807921 after 63 iteration

makie plot

nothing to add

grpahs using GLMakie

more with dataframe

["year,language", "1951,Regional Assembly Language", "1952,Autocode", "1954,IPL", "1955,FLOW-MATIC", "1957,FORTRAN", "1957,COMTRAN", "1958,LISP", "1958,ALGOL 58", "1959,FACT", "1959,COBOL", "1959,RPG", "1962,APL", "1962,Simula", "1962,SNOBOL", "1963,CPL", "1964,Speakeasy", "1964,BASIC", "1964,PL/I", "1966,JOSS", "1967,BCPL", "1968,Logo", "1969,B", "1970,Pascal", "1970,Forth", "1972,C", "1972,Smalltalk", "1972,Prolog", "1973,ML", "1975,Scheme", "1978,SQL ", "1980,C++ ", "1983,Ada", "1984,Common Lisp", "1984,MATLAB", "1984,dBase III", "1985,Eiffel", "1986,Objective-C", "1986,LabVIEW ", "1986,Erlang", "1987,Perl", "1988,Tcl", "1988,Wolfram Language ", "1989,FL ", "1990,Haskell", "1991,Python", "1991,Visual Basic", "1993,Lua", "1993,R", "1994,CLOS ", "1995,Ruby", "1995,Ada 95", "1995,Java", "1995,Delphi ", "1995,JavaScript", "1995,PHP", "1997,Rebol", "2000,ActionScript", "2001,C#", "2001,D", "2002,Scratch", "2003,Groovy", "2003,Scala", "2005,F#", "2006,PowerShell", "2007,Clojure", "2009,Go", "2010,Rust", "2011,Dart", "2011,Kotlin", "2011,Red", "2011,Elixir", "2012,Julia", "2014,Swift"]
73×2 DataFrame
 Row │ year   language
     │ Int64  String31
─────┼───────────────────────────────────
   1 │  1951  Regional Assembly Language
   2 │  1952  Autocode
   3 │  1954  IPL
   4 │  1955  FLOW-MATIC
   5 │  1957  FORTRAN
   6 │  1957  COMTRAN
   7 │  1958  LISP
   8 │  1958  ALGOL 58
   9 │  1959  FACT
  10 │  1959  COBOL
  11 │  1959  RPG
  12 │  1962  APL
  13 │  1962  Simula
  14 │  1962  SNOBOL
  15 │  1963  CPL
  16 │  1964  Speakeasy
  17 │  1964  BASIC
  18 │  1964  PL/I
  19 │  1966  JOSS
  20 │  1967  BCPL
  21 │  1968  Logo
  22 │  1969  B
  23 │  1970  Pascal
  24 │  1970  Forth
  25 │  1972  C
  26 │  1972  Smalltalk
  27 │  1972  Prolog
  28 │  1973  ML
  29 │  1975  Scheme
  30 │  1978  SQL
  31 │  1980  C++
  32 │  1983  Ada
  33 │  1984  Common Lisp
  34 │  1984  MATLAB
  35 │  1984  dBase III
  36 │  1985  Eiffel
  37 │  1986  Objective-C
  38 │  1986  LabVIEW
  39 │  1986  Erlang
  40 │  1987  Perl
  41 │  1988  Tcl
  42 │  1988  Wolfram Language
  43 │  1989  FL
  44 │  1990  Haskell
  45 │  1991  Python
  46 │  1991  Visual Basic
  47 │  1993  Lua
  48 │  1993  R
  49 │  1994  CLOS
  50 │  1995  Ruby
  51 │  1995  Ada 95
  52 │  1995  Java
  53 │  1995  Delphi
  54 │  1995  JavaScript
  55 │  1995  PHP
  56 │  1997  Rebol
  57 │  2000  ActionScript
  58 │  2001  C#
  59 │  2001  D
  60 │  2002  Scratch
  61 │  2003  Groovy
  62 │  2003  Scala
  63 │  2005  F#
  64 │  2006  PowerShell
  65 │  2007  Clojure
  66 │  2009  Go
  67 │  2010  Rust
  68 │  2011  Dart
  69 │  2011  Kotlin
  70 │  2011  Red
  71 │  2011  Elixir
  72 │  2012  Julia
  73 │  2014  Swift
(73, 2)
2×7 DataFrame
 Row │ variable  mean     min       median  max        nmissing  eltype
     │ Symbol    Union…   Any       Union…  Any        Int64     DataType
─────┼────────────────────────────────────────────────────────────────────
   1 │ year      1982.99  1951      1986.0  2014              0  Int64
   2 │ language           ALGOL 58          dBase III         0  String31
4×2 DataFrame
 Row │ year   language
     │ Int64  String31
─────┼─────────────────
   1 │  2011  Dart
   2 │  2011  Kotlin
   3 │  2011  Red
   4 │  2011  Elixir
2×2 DataFrame
 Row │ year   language
     │ Int64  String31
─────┼─────────────────
   1 │  1993  R
   2 │  2011  Red
73×2 DataFrame
 Row │ language                    cnt
     │ String31                    Int64
─────┼───────────────────────────────────
   1 │ Regional Assembly Language      1
   2 │ Autocode                        1
   3 │ IPL                             1
   4 │ FLOW-MATIC                      1
   5 │ FORTRAN                         1
   6 │ COMTRAN                         1
   7 │ LISP                            1
   8 │ ALGOL 58                        1
   9 │ FACT                            1
  10 │ COBOL                           1
  11 │ RPG                             1
  12 │ APL                             1
  13 │ Simula                          1
  14 │ SNOBOL                          1
  15 │ CPL                             1
  16 │ Speakeasy                       1
  17 │ BASIC                           1
  18 │ PL/I                            1
  19 │ JOSS                            1
  20 │ BCPL                            1
  21 │ Logo                            1
  22 │ B                               1
  23 │ Pascal                          1
  24 │ Forth                           1
  25 │ C                               1
  26 │ Smalltalk                       1
  27 │ Prolog                          1
  28 │ ML                              1
  29 │ Scheme                          1
  30 │ SQL                             1
  31 │ C++                             1
  32 │ Ada                             1
  33 │ Common Lisp                     1
  34 │ MATLAB                          1
  35 │ dBase III                       1
  36 │ Eiffel                          1
  37 │ Objective-C                     1
  38 │ LabVIEW                         1
  39 │ Erlang                          1
  40 │ Perl                            1
  41 │ Tcl                             1
  42 │ Wolfram Language                1
  43 │ FL                              1
  44 │ Haskell                         1
  45 │ Python                          1
  46 │ Visual Basic                    1
  47 │ Lua                             1
  48 │ R                               1
  49 │ CLOS                            1
  50 │ Ruby                            1
  51 │ Ada 95                          1
  52 │ Java                            1
  53 │ Delphi                          1
  54 │ JavaScript                      1
  55 │ PHP                             1
  56 │ Rebol                           1
  57 │ ActionScript                    1
  58 │ C#                              1
  59 │ D                               1
  60 │ Scratch                         1
  61 │ Groovy                          1
  62 │ Scala                           1
  63 │ F#                              1
  64 │ PowerShell                      1
  65 │ Clojure                         1
  66 │ Go                              1
  67 │ Rust                            1
  68 │ Dart                            1
  69 │ Kotlin                          1
  70 │ Red                             1
  71 │ Elixir                          1
  72 │ Julia                           1
  73 │ Swift                           1
45×2 DataFrame
 Row │ year   cnt
     │ Int64  Int64
─────┼──────────────
   1 │  1951      1
   2 │  1952      1
   3 │  1954      1
   4 │  1955      1
   5 │  1957      2
   6 │  1958      2
   7 │  1959      3
   8 │  1962      3
   9 │  1963      1
  10 │  1964      3
  11 │  1966      1
  12 │  1967      1
  13 │  1968      1
  14 │  1969      1
  15 │  1970      2
  16 │  1972      3
  17 │  1973      1
  18 │  1975      1
  19 │  1978      1
  20 │  1980      1
  21 │  1983      1
  22 │  1984      3
  23 │  1985      1
  24 │  1986      3
  25 │  1987      1
  26 │  1988      2
  27 │  1989      1
  28 │  1990      1
  29 │  1991      2
  30 │  1993      2
  31 │  1994      1
  32 │  1995      6
  33 │  1997      1
  34 │  2000      1
  35 │  2001      2
  36 │  2002      1
  37 │  2003      2
  38 │  2005      1
  39 │  2006      1
  40 │  2007      1
  41 │  2009      1
  42 │  2010      1
  43 │  2011      4
  44 │  2012      1
  45 │  2014      1
16×2 DataFrame
 Row │ year   cnt
     │ Int64  Int64
─────┼──────────────
   1 │  1957      2
   2 │  1958      2
   3 │  1959      3
   4 │  1962      3
   5 │  1964      3
   6 │  1970      2
   7 │  1972      3
   8 │  1984      3
   9 │  1986      3
  10 │  1988      2
  11 │  1991      2
  12 │  1993      2
  13 │  1995      6
  14 │  2001      2
  15 │  2003      2
  16 │  2011      4

ggplot graphs from julia

transferring dataframe to R

forecasting

scikit learn

nothing to add

########################################
using logistic regression of scikitlearn
########################################
accuracy: 0.94
[0.9090909090909091, 0.9090909090909091, 0.9, 0.8888888888888888, 1.0]
0.9214141414141415    0.044709950748680026

####################################
using Random forest from scikitlearn
####################################
[0.9090909090909091, 0.8181818181818182, 0.9, 0.8888888888888888, 1.0]
0.9032323232323233    0.06490007073737401

#############################
using gradient boosting model
#############################
[0.9090909090909091, 0.8181818181818182, 0.9, 0.8888888888888888, 1.0]
0.9032323232323233    0.06490007073737401

#########################
using decision tree model
#########################
[0.9090909090909091, 0.8181818181818182, 0.9, 0.8888888888888888, 1.0]
0.9032323232323233    0.06490007073737401

##
hi
##

data science with Python

sample

5.0 12.0 13.0

import csv file using panda

     sepal_length  sepal_width  petal_length  petal_width    species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2        NaN
2             4.7          3.2           1.3          0.2     setosa
3             NaN          3.1           1.5          0.2     setosa
4             5.0          3.6           NaN          0.2        NaN
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          NaN           5.0          1.9  virginica
147           6.5          NaN           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   sepal_length  138 non-null    float64
 1   sepal_width   134 non-null    float64
 2   petal_length  138 non-null    float64
 3   petal_width   134 non-null    float64
 4   species       131 non-null    object 
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
       sepal_length  sepal_width  petal_length  petal_width
count    138.000000   134.000000    138.000000   134.000000
mean       5.786957     3.058955      3.821739     1.182090
std        0.789329     0.423770      1.776519     0.760871
min        4.300000     2.000000      1.000000     0.100000
25%        5.100000     2.800000      1.600000     0.300000
50%        5.700000     3.000000      4.400000     1.300000
75%        6.400000     3.300000      5.100000     1.800000
max        7.900000     4.400000      6.900000     2.500000
150
5
array(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
       'species'], dtype=object)

how to remove missing values in python using pandas

sepal_length    12
sepal_width     16
petal_length    12
petal_width     16
species         19
dtype: int64
     sepal_length  sepal_width  petal_length  petal_width    species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2     setosa
2             4.7          3.2           1.3          0.2     setosa
3             4.7          3.1           1.5          0.2     setosa
4             5.0          3.6           1.5          0.2     setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          3.0           5.0          1.9  virginica
147           6.5          3.0           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
sepal_length    0
sepal_width     0
petal_length    0
petal_width     0
species         0
dtype: int64