# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("X", "CMC", "ZEUS", "TSLA", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CMC" "GOOG" "TSLA" "X" "ZEUS"
weights <- c(0.2, 0.3, 0.2, 0.15, 0.15)
weights
## [1] 0.20 0.30 0.20 0.15 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 CMC 0.2
## 2 GOOG 0.3
## 3 TSLA 0.2
## 4 X 0.15
## 5 ZEUS 0.15
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 143 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0469
## 2 2013-02-28 -0.0139
## 3 2013-03-28 0.0203
## 4 2013-04-30 0.0272
## 5 2013-05-31 0.181
## 6 2013-06-28 0.00690
## 7 2013-07-31 0.0761
## 8 2013-08-30 0.0186
## 9 2013-09-30 0.0941
## 10 2013-10-31 0.0530
## # ℹ 133 more rows
rfr <- 0.0003
porftolio_SharpRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
porftolio_SharpRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.173
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)}
window <- 24
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 120 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.368
## 2 2015-01-30 0.239
## 3 2015-02-27 0.280
## 4 2015-03-31 0.251
## 5 2015-04-30 0.236
## 6 2015-05-29 0.199
## 7 2015-06-30 0.178
## 8 2015-07-31 0.110
## 9 2015-08-31 0.0726
## 10 2015-09-30 -0.104
## # ℹ 110 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2018-06-01"), y = 0.5,
label = "This portfolio has done well 2016-2018
and then again 2020-2021.",
color = "red", size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
November 2016 was an election year which can impact the market and different sectors. For me it improved my returns into 2018 where it had a peak before it dropped again. It would again rise in 2020 another election year. The same could be happening now as it looks like the returns are begining to trend upward.