#ColOpenData::climate_tags
hogares=fread("C:/Users/germa_30zwgix/OneDrive/Documentos/R/hogares.txt",header=TRUE)
glue::glue("Cantidad de Hogares {dim(hogares)[1]}")
## Cantidad de Hogares 23573893
names(hogares)
## [1] "CNS" "U_DPRTMNT" "U_MNCP" "U_CLS" "P_SX"
## [6] "EDD_MYR_99" "MRC_LEA" "CNTDD_PRSNS" "LATI_MGN" "LONG_MGN"
hogaresuniq=hogares %>% distinct(LATI_MGN,LONG_MGN, .keep_all = T)
glue::glue("Cantidad de coordenadas unicas {dim(hogaresuniq)[1]}")
## Cantidad de coordenadas unicas 12904346
#names(tumbas)
#hogares$paste=paste0(hogares$LATI_MGN,hogares$LONG_MGN)
#hogares$paste
cente=fread("C:/Users/germa_30zwgix/OneDrive/Documentos/R/puntoshogares.txt",header=TRUE)
centeuniq=cente %>% distinct(LATI_MGN,LONG_MGN, .keep_all = T)
glue::glue("Numero de coordenadas unicas con centenarios {dim(centeuniq)[1]}")
## Numero de coordenadas unicas con centenarios 11879
cente_base=merge(hogaresuniq,centeuniq,by=c("LATI_MGN","LONG_MGN"),all.x=T)
tumbaspp=ppp(cente_base$LONG_MGN,cente_base$LATI_MGN,c(min(cente_base$LONG_MGN)-1,max(cente_base$LONG_MGN)+1), c(min(cente_base$LATI_MGN)-1,max(cente_base$LATI_MGN)+1))
#plot(tumbaspp)
casos=subset(tumbaspp,!is.na(cente_base$CNTDD_PRSNS_MYR_99))
controles=subset(tumbaspp,is.na(cente_base$CNTDD_PRSNS_MYR_99))
glue::glue("distribucion de puntos segun reporte de centenarios")
## distribucion de puntos segun reporte de centenarios
kbl(table(!is.na(cente_base$CNTDD_PRSNS_MYR_99)), escape = F) %>%
kable_paper("hover", full_width = F)
Var1 | Freq |
---|---|
FALSE | 12892467 |
TRUE | 11879 |
par(mfrow=c(1,2),mar=c(2,2,2,2)/2)
plot(casos)
plot(controles)
#par(mfrow=c(1,1),mar=c(2,2,2,2)/2)
#risk(casos,controles,doplot = T)
bw=seq(0.00001,0.5,length=10)
par(mfrow=c(4,4),mar=c(2,2,2,2)/2)
for (i in 1:length(bw))
{
plot(density.ppp(casos,sigma=bw[i]),cex.main=0.3,main=paste("casos, bw = ",round(bw[i],2)))
plot(density.ppp(controles,sigma=bw[i]),cex.main=0.3,main=paste("controles, bw = ",round(bw[i],2)))
}
#bw_fija=LSCV.risk(casos,controles)
bw_fija=0.06
f.tilde=bivariate.density(casos,h0=bw_fija)
g.tilde=bivariate.density(controles,h0=bw_fija)
rho.tilde=risk(f=f.tilde,g=g.tilde)
par(mfrow=c(1,1),mar=c(2,2,2,2)/2)
pval.tilde=tolerance(rs=rho.tilde,method="MC",ITER=200)
## | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 3% | |== | 4% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 13% | |========= | 14% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 96% | |==================================================================== | 97% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100%
#plot(pval.tilde)
plot(rho.tilde,xlab="Este", ylab="Norte");tol.contour(pim=pval.tilde,levels=c(0.05,0.01),lty=1:2,add=TRUE)
#View(pval.tilde$v)