Data yang digunakan pada contoh dapat diunduh disini
Split Plot RAL
Bobot<-read.csv("D:/IPB/STA1512/STA1512/Prak. By Fida/Data Pertemuan 10.csv")
str(Bobot)
## 'data.frame': 27 obs. of 4 variables:
## $ Pukan : chr "k1" "k1" "k1" "k2" ...
## $ Benih : chr "j1" "j2" "j3" "j1" ...
## $ Ulangan : int 1 1 1 1 1 1 1 1 1 2 ...
## $ Bobot_Biji: num 63.8 66.4 67.8 65.3 68 ...
Bobot$Pukan<-as.factor(Bobot$Pukan)
Bobot$Benih<-as.factor(Bobot$Benih)
Bobot$Ulangan<-as.factor(Bobot$Ulangan)
str(Bobot)
## 'data.frame': 27 obs. of 4 variables:
## $ Pukan : Factor w/ 3 levels "k1","k2","k3": 1 1 1 2 2 2 3 3 3 1 ...
## $ Benih : Factor w/ 3 levels "j1","j2","j3": 1 2 3 1 2 3 1 2 3 1 ...
## $ Ulangan : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 2 ...
## $ Bobot_Biji: num 63.8 66.4 67.8 65.3 68 ...
library(lme4)
## Loading required package: Matrix
library(agricolae)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
aovSPlot1<-aov(Bobot_Biji~Pukan*Benih+Error(Ulangan:Pukan),data=Bobot)
## Warning in aov(Bobot_Biji ~ Pukan * Benih + Error(Ulangan:Pukan), data =
## Bobot): Error() model is singular
summary(aovSPlot1)
##
## Error: Ulangan:Pukan
## Df Sum Sq Mean Sq F value Pr(>F)
## Pukan 2 20.873 10.436 18.46 0.00273 **
## Residuals 6 3.392 0.565
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Benih 2 16.418 8.209 10.79 0.00208 **
## Pukan:Benih 4 11.345 2.836 3.73 0.03395 *
## Residuals 12 9.125 0.760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(ggplot2)
ggplot2::ggplot(aes(x = Benih, y = Bobot_Biji, group = Pukan, colour = Pukan), data = Bobot) + geom_line()+ theme_bw()
ggplot2::ggplot(aes(x = Benih, y = Bobot_Biji, group = Pukan, colour = Pukan), data = Bobot) + geom_line() +
facet_wrap(~ Ulangan) + theme_bw()
Split Plot RAK
aovSPlot2<-aov(Bobot_Biji~Pukan*Benih+Ulangan+Error(Ulangan:Pukan),data=Bobot)
## Warning in aov(Bobot_Biji ~ Pukan * Benih + Ulangan + Error(Ulangan:Pukan), :
## Error() model is singular
summary(aovSPlot2)
##
## Error: Ulangan:Pukan
## Df Sum Sq Mean Sq F value Pr(>F)
## Pukan 2 20.873 10.436 14.978 0.0139 *
## Ulangan 2 0.605 0.303 0.434 0.6751
## Residuals 4 2.787 0.697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Benih 2 16.418 8.209 10.79 0.00208 **
## Pukan:Benih 4 11.345 2.836 3.73 0.03395 *
## Residuals 12 9.125 0.760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sp <- with(Bobot,sp.plot(block=Ulangan, pplot=Pukan, splot=Benih, Y=Bobot_Biji))
##
## ANALYSIS SPLIT PLOT: Bobot_Biji
## Class level information
##
## Pukan : k1 k2 k3
## Benih : j1 j2 j3
## Ulangan : 1 2 3
##
## Number of observations: 27
##
## Analysis of Variance Table
##
## Response: Bobot_Biji
## Df Sum Sq Mean Sq F value Pr(>F)
## Ulangan 2 0.6050 0.3025 0.3978 0.680332
## Pukan 2 20.8727 10.4364 14.9782 0.013876 *
## Ea 4 2.7871 0.6968
## Benih 2 16.4178 8.2089 10.7947 0.002079 **
## Pukan:Benih 4 11.3448 2.8362 3.7296 0.033947 *
## Eb 12 9.1255 0.7605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## cv(a) = 1.3 %, cv(b) = 1.3 %, Mean = 65.84037
Uji Lanjut
Prep_df = sp$gl.a
Prep_df
## [1] 4
Temp_df = sp$gl.b
Temp_df
## [1] 12
Prep_JKG = sp$Ea
Prep_JKG
## [1] 0.6967704
Temp_JKG = sp$Eb
Temp_JKG
## [1] 0.7604574
uj <- with(Bobot,LSD.test(Bobot_Biji,
Pukan,
DFerror = Prep_df,
MSerror = Prep_JKG,
console = TRUE))
##
## Study: Bobot_Biji ~ Pukan
##
## LSD t Test for Bobot_Biji
##
## Mean Square Error: 0.6967704
##
## Pukan, means and individual ( 95 %) CI
##
## Bobot_Biji std r se LCL UCL Min Max Q25 Q50
## k1 65.71222 1.239100 9 0.2782426 64.93970 66.48475 63.83 67.83 65.00 65.83
## k2 66.97556 1.495895 9 0.2782426 66.20303 67.74808 65.00 69.20 65.83 66.67
## k3 64.83333 1.123365 9 0.2782426 64.06081 65.60586 63.00 66.50 64.17 65.00
## Q75
## k1 66.43
## k2 68.00
## k3 65.50
##
## Alpha: 0.05 ; DF Error: 4
## Critical Value of t: 2.776445
##
## least Significant Difference: 1.092516
##
## Treatments with the same letter are not significantly different.
##
## Bobot_Biji groups
## k2 66.97556 a
## k1 65.71222 b
## k3 64.83333 b
uj2 <- with(Bobot,LSD.test(Bobot_Biji,
Benih,
DFerror = Prep_df,
MSerror = Prep_JKG,
console = TRUE))
##
## Study: Bobot_Biji ~ Benih
##
## LSD t Test for Bobot_Biji
##
## Mean Square Error: 0.6967704
##
## Benih, means and individual ( 95 %) CI
##
## Bobot_Biji std r se LCL UCL Min Max Q25 Q50
## j1 65.11000 0.5890246 9 0.2782426 64.33747 65.88253 63.83 65.83 65.00 65.33
## j2 66.92111 1.4104294 9 0.2782426 66.14859 67.69364 65.00 69.20 65.83 66.50
## j3 65.49000 1.8043351 9 0.2782426 64.71747 66.26253 63.00 67.83 64.17 65.83
## Q75
## j1 65.50
## j2 68.00
## j3 66.67
##
## Alpha: 0.05 ; DF Error: 4
## Critical Value of t: 2.776445
##
## least Significant Difference: 1.092516
##
## Treatments with the same letter are not significantly different.
##
## Bobot_Biji groups
## j2 66.92111 a
## j3 65.49000 b
## j1 65.11000 b
uj3 <- with(Bobot,LSD.test(Bobot_Biji,
interaction(Pukan,Benih),
DFerror = Prep_df,
MSerror = Prep_JKG,
console = TRUE))
##
## Study: Bobot_Biji ~ interaction(Pukan, Benih)
##
## LSD t Test for Bobot_Biji
##
## Mean Square Error: 0.6967704
##
## interaction(Pukan, Benih), means and individual ( 95 %) CI
##
## Bobot_Biji std r se LCL UCL Min Max Q25
## k1.j1 64.77667 0.8571075 3 0.4819303 63.43861 66.11472 63.83 65.50 64.415
## k1.j2 66.36333 0.5033223 3 0.4819303 65.02528 67.70139 65.83 66.83 66.130
## k1.j3 65.99667 1.7559423 3 0.4819303 64.65861 67.33472 64.33 67.83 65.080
## k2.j1 65.38667 0.4178915 3 0.4819303 64.04861 66.72472 65.00 65.83 65.165
## k2.j2 68.62333 0.6013596 3 0.4819303 67.28528 69.96139 68.00 69.20 68.335
## k2.j3 66.91667 0.7414400 3 0.4819303 65.57861 68.25472 66.33 67.75 66.500
## k3.j1 65.16667 0.4384442 3 0.4819303 63.82861 66.50472 64.67 65.50 65.000
## k3.j2 65.77667 0.7514209 3 0.4819303 64.43861 67.11472 65.00 66.50 65.415
## k3.j3 63.55667 0.5870548 3 0.4819303 62.21861 64.89472 63.00 64.17 63.250
## Q50 Q75
## k1.j1 65.00 65.250
## k1.j2 66.43 66.630
## k1.j3 65.83 66.830
## k2.j1 65.33 65.580
## k2.j2 68.67 68.935
## k2.j3 66.67 67.210
## k3.j1 65.33 65.415
## k3.j2 65.83 66.165
## k3.j3 63.50 63.835
##
## Alpha: 0.05 ; DF Error: 4
## Critical Value of t: 2.776445
##
## least Significant Difference: 1.892293
##
## Treatments with the same letter are not significantly different.
##
## Bobot_Biji groups
## k2.j2 68.62333 a
## k2.j3 66.91667 ab
## k1.j2 66.36333 bc
## k1.j3 65.99667 bc
## k3.j2 65.77667 bc
## k2.j1 65.38667 bcd
## k3.j1 65.16667 bcd
## k1.j1 64.77667 cd
## k3.j3 63.55667 d