sigmoid <- function(x) 1/(1 + exp(-x))
x <- seq(-5, 5, 0.1)
library(plotly)
plot_ly(type = "scatter", mode = "lines") |>
  add_trace(x = x, y = sigmoid(x), name = "Sigmoid")
tanh <- function(x) (exp(x)-exp(-x))/(exp(x)+exp(-x))
plot_ly(type = "scatter", mode = "lines") |>
  add_trace(x = x, y = sigmoid(x), name = "Sigmoid") |>
  add_trace(x = x, y = tanh(x),    name = "Tanh")
relu <- function(x) pmax(0,x)
plot_ly(type = "scatter", mode = "lines") |>
  add_trace(x = x, y = sigmoid(x), name = "Sigmoid") |>
  add_trace(x = x, y = tanh(x),    name = "Tanh")    |>
  add_trace(x = x, y = relu(x),    name = "ReLU")
softmax <- function(y) (exp(y))/(sum(exp(y)))
y <- c(-1.0, 0.2, -1.5, 2.0)
xnames <- paste0('y', seq_along(y))

p <- softmax(y)

plot_ly(type = "bar", x = xnames, y = y, name = "入力値 y") |>
  add_trace(y = p, name = "Softmax 変換後")
a <- sum(p)
a
## [1] 1
sigmoid <- function(t) 1/(1+exp(-t))

x <- c(0.2,0.3,0.4)
w <- c(0.3,0.2,0.1)
b <- 0.1

t <- sum(w*x)+b
y <- sigmoid(t)
y
## [1] 0.5646363

ニューロンは活性化する