Unordered Factor Levels
# Transform Data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) + geom_point()
Ordered Factor Levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) + geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
Moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point()
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2022-10-28" %>% ymd()
## [1] "2022-10-28"
# From numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2024-11-04 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2024-11-04"
date_time <- ymd_hms("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18:18:18 UTC"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt
## # A tibble: 328,063 × 9
## origin dest dep_delay arr_delay dep_time sched_dep_time
## <chr> <chr> <dbl> <dbl> <dttm> <dttm>
## 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00
## 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00
## 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00
## 4 JFK BQN -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00
## 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00
## 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00
## 7 EWR FLL -5 19 2013-01-01 05:55:00 2013-01-01 06:00:00
## 8 LGA IAD -3 -14 2013-01-01 05:57:00 2013-01-01 06:00:00
## 9 JFK MCO -3 -8 2013-01-01 05:57:00 2013-01-01 06:00:00
## 10 LGA ORD -2 8 2013-01-01 05:58:00 2013-01-01 06:00:00
## # ℹ 328,053 more rows
## # ℹ 3 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-08-04 20:26:00 2013-08-01 00:00:00
## 2 2013-08-11 06:57:00 2013-08-01 00:00:00
## 3 2013-05-31 08:00:00 2013-05-01 00:00:00
## 4 2013-08-17 08:55:00 2013-08-01 00:00:00
## 5 2013-11-07 13:57:00 2013-11-01 00:00:00
## 6 2013-06-26 15:59:00 2013-06-01 00:00:00
## 7 2013-10-22 07:17:00 2013-10-01 00:00:00
## 8 2013-11-24 06:54:00 2013-11-01 00:00:00
## 9 2013-09-25 06:14:00 2013-09-01 00:00:00
## 10 2013-09-02 18:29:00 2013-09-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-07-05 13:54:00 2013-08-01 00:00:00
## 2 2013-02-04 12:45:00 2013-03-01 00:00:00
## 3 2013-03-25 11:25:00 2013-04-01 00:00:00
## 4 2013-04-21 10:08:00 2013-05-01 00:00:00
## 5 2013-09-05 22:50:00 2013-10-01 00:00:00
## 6 2013-06-10 17:04:00 2013-07-01 00:00:00
## 7 2013-05-03 10:43:00 2013-06-01 00:00:00
## 8 2013-10-01 17:54:00 2013-11-01 00:00:00
## 9 2013-02-01 09:56:00 2013-03-01 00:00:00
## 10 2013-03-31 17:59:00 2013-04-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-01-01 15:27:00 2013-01-01 15:27:00
## 2 2013-10-26 07:37:00 2013-01-01 07:37:00
## 3 2013-04-10 14:55:00 2013-01-01 14:55:00
## 4 2013-12-17 21:45:00 2013-01-01 21:45:00
## 5 2013-03-17 07:42:00 2013-01-01 07:42:00
## 6 2013-03-06 21:54:00 2013-01-01 21:54:00
## 7 2013-08-12 18:11:00 2013-01-01 18:11:00
## 8 2013-12-26 21:53:00 2013-01-01 21:53:00
## 9 2013-05-20 17:59:00 2013-01-01 17:59:00
## 10 2013-03-29 09:52:00 2013-01-01 09:52:00