#Transform Data: calculate average TV hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(avg_tvhours = mean(tvhours, na.rm = TRUE))
#plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
#Label
labs(y = NULL, x = "Mean Daily Hours watching TV")
#### Moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point() +
#Label
labs(y = NULL, x = "Mean Daily Hours watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
#recode function
gss_cat %>%
#rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black","Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump Small Levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
#from strings
"2024-11-01" %>% ymd()
## [1] "2024-11-01"
"2024-11-01 3-24-45" %>% ymd_hms()
## [1] "2024-11-01 03:24:45 UTC"
#from numbers
20241102 %>% ymd()
## [1] "2024-11-02"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day,
hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
#from date to date-time
today() %>% as_datetime()
## [1] "2024-11-04 UTC"
#from date-time to date
now() %>% as_date()
## [1] "2024-11-04"
date_time <- ymd_hms("2024-11-04 14-31-39")
date_time
## [1] "2024-11-04 14:31:39 UTC"
year(date_time)
## [1] 2024
month(date_time, label = TRUE, abbr = FALSE)
## [1] November
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 309
mday(date_time)
## [1] 4
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Monday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt
## # A tibble: 328,063 × 9
## origin dest dep_delay arr_delay dep_time sched_dep_time
## <chr> <chr> <dbl> <dbl> <dttm> <dttm>
## 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00
## 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00
## 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00
## 4 JFK BQN -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00
## 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00
## 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00
## 7 EWR FLL -5 19 2013-01-01 05:55:00 2013-01-01 06:00:00
## 8 LGA IAD -3 -14 2013-01-01 05:57:00 2013-01-01 06:00:00
## 9 JFK MCO -3 -8 2013-01-01 05:57:00 2013-01-01 06:00:00
## 10 LGA ORD -2 8 2013-01-01 05:58:00 2013-01-01 06:00:00
## # ℹ 328,053 more rows
## # ℹ 3 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE, abbr = FALSE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor data for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-07-16 18:12:00 2013-07-01 00:00:00
## 2 2013-10-19 18:37:00 2013-10-01 00:00:00
## 3 2013-02-24 17:23:00 2013-02-01 00:00:00
## 4 2013-09-20 07:11:00 2013-09-01 00:00:00
## 5 2013-10-08 08:52:00 2013-10-01 00:00:00
## 6 2013-02-17 13:37:00 2013-02-01 00:00:00
## 7 2013-09-27 18:15:00 2013-09-01 00:00:00
## 8 2013-04-20 06:10:00 2013-04-01 00:00:00
## 9 2013-01-21 10:59:00 2013-01-01 00:00:00
## 10 2013-10-18 10:38:00 2013-10-01 00:00:00
# ceiling data for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-13 13:37:00 2013-02-01 00:00:00
## 2 2013-03-01 15:32:00 2013-04-01 00:00:00
## 3 2013-05-16 09:47:00 2013-06-01 00:00:00
## 4 2013-02-28 08:57:00 2013-03-01 00:00:00
## 5 2013-08-22 21:02:00 2013-09-01 00:00:00
## 6 2013-10-08 07:53:00 2013-11-01 00:00:00
## 7 2013-01-07 12:14:00 2013-02-01 00:00:00
## 8 2013-10-30 09:57:00 2013-11-01 00:00:00
## 9 2013-03-22 15:37:00 2013-04-01 00:00:00
## 10 2013-02-26 06:28:00 2013-03-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-11-23 13:54:00 2013-01-01 13:54:00
## 2 2013-06-05 12:05:00 2013-01-01 12:05:00
## 3 2013-10-29 22:35:00 2013-01-01 22:35:00
## 4 2013-04-09 17:00:00 2013-01-01 17:00:00
## 5 2013-03-28 10:45:00 2013-01-01 10:45:00
## 6 2013-10-19 17:58:00 2013-01-01 17:58:00
## 7 2013-06-22 17:54:00 2013-01-01 17:54:00
## 8 2013-09-16 11:59:00 2013-01-01 11:59:00
## 9 2013-05-18 08:59:00 2013-01-01 08:59:00
## 10 2013-11-29 17:12:00 2013-01-01 17:12:00