library(readr)
library(ggplot2)
hr <- read_csv('https://raw.githubusercontent.com/aiplanethub/Datasets/refs/heads/master/HR_comma_sep.csv')
## Rows: 14999 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Department, salary
## dbl (8): satisfaction_level, last_evaluation, number_project, average_montly...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#1 Average Monthly Hours vs Satisfavton Levels
cor.test(hr$average_montly_hours, hr$satisfaction_level)
##
## Pearson's product-moment correlation
##
## data: hr$average_montly_hours and hr$satisfaction_level
## t = -2.4556, df = 14997, p-value = 0.01408
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.036040356 -0.004045605
## sample estimates:
## cor
## -0.02004811
ggplot(hr, aes(x = average_montly_hours, y = satisfaction_level)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "orange") +
labs(title = "Satisfaction level is not affected by the number of average monthly hours worked",
x = "Average Monthly Hours",
y = "Satisfaction Level")
## `geom_smooth()` using formula = 'y ~ x'
cor.test(hr$last_evaluation, hr$satisfaction_level)
##
## Pearson's product-moment correlation
##
## data: hr$last_evaluation and hr$satisfaction_level
## t = 12.933, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.08916727 0.12082195
## sample estimates:
## cor
## 0.1050212
ggplot(hr, aes(x = last_evaluation, y = satisfaction_level)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = 'orange') +
labs(title = "Better last evaluation scores increase employee satisfaction levels",
x = "Last Evaluation",
y = "Satisfaction Level")
## `geom_smooth()` using formula = 'y ~ x'
cor.test(hr$number_project, hr$average_montly_hours)
##
## Pearson's product-moment correlation
##
## data: hr$number_project and hr$average_montly_hours
## t = 56.219, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4039037 0.4303411
## sample estimates:
## cor
## 0.4172106
ggplot(hr, aes(x = number_project, y = average_montly_hours)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "orange") +
labs(title = "More projects typically mean employees work longer average monthly hours",
x = "Number of Projects",
y = "Average Monthly Hours")
## `geom_smooth()` using formula = 'y ~ x'
cor.test(hr$number_project, hr$time_spend_company)
##
## Pearson's product-moment correlation
##
## data: hr$number_project and hr$time_spend_company
## t = 24.579, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1813532 0.2121217
## sample estimates:
## cor
## 0.1967859
ggplot(hr, aes(x = number_project, y = time_spend_company)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "orange") +
labs(title = "Employees with fewer projects tend to stay at company slightly longer",
x = "Number of Projects",
y = "Time Spend at Company")
## `geom_smooth()` using formula = 'y ~ x'