Irt paper

Author

Philipp Chapkovski

language n freq
0 2745 0.9852836
1 41 0.0147164
ethnicity n freq
1 2502 89.81%
2 219 7.86%
999 65 2.33%
role first second total freq
0 1059 353 1412 100%
1 1019 355 1374 100%

Some descriptives:

City Wave Sender Responder Total
Kazan' Both 108 111 219
Moscow Both 116 113 229
Arkhangelsk First 43 51 94
Ekaterinburg First 108 103 211
Khabarovsk First 69 63 132
Makhachkala First 29 19 48
Novosibirsk First 106 104 210
Perm' First 109 105 214
Rostov-Na-Donu First 110 104 214
St. Petersburg First 110 101 211
Vladivostok First 56 55 111
Voronezh First 108 100 208
Chelyabinsk Second 43 42 85
Irkutsk Second 36 36 72
Kaliningrad Second 14 15 29
Krasnodar Second 45 44 89
Krasnoyarsk Second 41 42 83
Nnovgorod Second 43 44 87
Omsk Second 42 45 87
Sochi Second 15 17 32
Ufa Second 43 46 89
Volgograd Second 46 47 93

Mean sending values per city

Mean return values per city

let’s melt the data on sender_decision_

Return decisions:

let’ build a chart showing for each city involved average sending decisions to away city, home city, and difference between them

let’s analyse sender and return decision by target cities

Reading median salary data

some fixed effects models on sender and return decisions

[1] 17028    14
DV: odds to send full endowment
Home city only Distance without home cities Distance+diff in income Full
home_cityhome 2.562***
(0.134)
target_cityChelyabinsk −0.356 −0.498 −0.260 −0.166
(0.289) (0.317) (0.313) (0.289)
target_cityEkaterinburg 0.386** 0.320* 0.492*** 0.582***
(0.131) (0.138) (0.128) (0.121)
target_cityIrkutsk −0.369 0.303 0.385 0.593+
(0.297) (0.338) (0.334) (0.324)
target_cityKaliningrad 0.004 0.517+ 0.771** 0.878**
(0.269) (0.288) (0.286) (0.272)
target_cityKazan' −0.351* −0.506*** −0.266+ −0.300*
(0.137) (0.147) (0.141) (0.131)
target_cityKhabarovsk 0.058 0.897*** 0.870*** 0.940***
(0.128) (0.201) (0.205) (0.191)
target_cityKrasnodar −0.438+ −0.259 0.020 0.138
(0.257) (0.276) (0.276) (0.266)
target_cityKrasnoyarsk −0.293 0.186 0.249 0.391
(0.290) (0.312) (0.308) (0.305)
target_cityMakhachkala −1.528*** −1.484*** −1.009*** −0.829***
(0.154) (0.163) (0.220) (0.203)
target_cityMoscow −0.794*** −0.753*** −1.259*** −1.510***
(0.156) (0.162) (0.314) (0.296)
target_cityNnovgorod −0.150 −0.254 −0.013 0.117
(0.270) (0.294) (0.290) (0.270)
target_cityNovosibirsk 0.071 0.490*** 0.694*** 0.992***
(0.124) (0.144) (0.146) (0.130)
target_cityOmsk −0.270 −0.236 0.085 0.253
(0.284) (0.302) (0.306) (0.291)
target_cityPerm' −0.348** −0.524*** −0.292* −0.189
(0.123) (0.128) (0.129) (0.119)
target_cityRostov-Na-Donu −0.082 −0.122 0.188 0.306*
(0.124) (0.134) (0.140) (0.126)
target_citySochi −0.900*** −0.701** −0.422 −0.385
(0.258) (0.266) (0.267) (0.257)
target_citySt. Petersburg 0.538*** 0.622*** 0.436* 0.358+
(0.148) (0.158) (0.200) (0.187)
target_cityUfa −0.814** −1.053*** −0.799** −0.577*
(0.251) (0.278) (0.275) (0.247)
target_cityVladivostok 0.201 1.075*** 1.103*** 1.024***
(0.125) (0.209) (0.206) (0.191)
target_cityVolgograd −0.259 −0.117 0.215 0.143
(0.272) (0.293) (0.297) (0.274)
target_cityVoronezh −0.172 −0.296*
(0.114) (0.126)
distance −0.655*** −0.655*** −1.244***
(0.099) (0.099) (0.075)
I(distance^2) 0.057*** 0.057*** 0.136***
(0.014) (0.014) (0.011)
diff_salary 0.019* 0.022**
(0.008) (0.007)
Num.Obs. 11064 8811 8811 11064
R2 0.300 0.234 0.234 0.297
R2 Adj. 0.173 0.095 0.095 0.170
R2 Within 0.098 0.052 0.052 0.094
R2 Within Adj. 0.094 0.047 0.047 0.090
AIC 12512.7 10978.4 10978.4 12557.6
BIC 19568.2 16964.1 16964.1 19620.4
RMSE 0.40 0.42 0.42 0.40
Std.Errors by: participant_label by: participant_label by: participant_label by: participant_label
FE: city_eng X X X X
FE: participant_label X X X X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

#Plotting km vs probability to donate all

return models

DV: returned amount (as % of endowment)
Home city only Distance without home cities Distance+diff in income Full
Home Cityhome 0.096***
(0.005)
Target cityChelyabinsk 0.009 0.003 0.004 0.015
(0.011) (0.011) (0.011) (0.010)
Target cityEkaterinburg 0.013* 0.016** 0.014** 0.018***
(0.005) (0.005) (0.004) (0.004)
Target cityIrkutsk −0.002 0.022* 0.020+ 0.029**
(0.011) (0.011) (0.011) (0.011)
Target cityKaliningrad 0.012 0.023* 0.020+ 0.040***
(0.011) (0.010) (0.010) (0.010)
Target cityKazan' −0.012* −0.014** −0.013** −0.012*
(0.005) (0.005) (0.004) (0.005)
Target cityKhabarovsk 0.020** 0.044*** 0.049*** 0.050***
(0.006) (0.007) (0.007) (0.008)
Target cityKrasnodar −0.015 −0.004 −0.005 0.004
(0.010) (0.010) (0.010) (0.009)
Target cityKrasnoyarsk 0.009 0.020+ 0.018 0.030**
(0.011) (0.011) (0.011) (0.011)
Target cityMakhachkala −0.032*** −0.026*** −0.030*** −0.011**
(0.005) (0.005) (0.004) (0.004)
Target cityMoscow −0.042*** −0.041*** −0.035*** −0.064***
(0.006) (0.007) (0.009) (0.011)
Target cityNnovgorod 0.008 0.004 0.004 0.017+
(0.010) (0.009) (0.009) (0.009)
Target cityNovosibirsk 0.004 0.018** 0.010* 0.035***
(0.005) (0.005) (0.004) (0.005)
Target cityOmsk 0.005 0.012 0.010 0.022*
(0.011) (0.011) (0.011) (0.010)
Target cityPerm' −0.001 −0.006 −0.006 0.003
(0.005) (0.005) (0.004) (0.004)
Target cityRostov-Na-Donu 0.003 0.003 0.002 0.016***
(0.006) (0.005) (0.004) (0.005)
Target citySochi −0.023* −0.018+ −0.018+ −0.009
(0.010) (0.010) (0.010) (0.009)
Target citySt. Petersburg 0.006 0.013* 0.016* 0.001
(0.006) (0.006) (0.007) (0.007)
Target cityUfa −0.008 −0.015 −0.014 −0.003
(0.010) (0.011) (0.011) (0.010)
Target cityVladivostok 0.012** 0.041*** 0.048*** 0.041***
(0.005) (0.008) (0.007) (0.008)
Target cityVolgograd 0.009 0.010 0.010 0.022*
(0.010) (0.010) (0.010) (0.009)
Target cityVoronezh −0.005 −0.005 −0.004 0.000
(0.005) (0.005) (0.003) (0.004)
Distance −21.508*** −9.220*** −46.630***
(3.514) (1.363) (3.178)
(Distance^2) 1893.187*** 5137.126***
(511.802) (494.425)
Diff Salary 0.000 0.001**
(0.000) (0.000)
Num.Obs. 16548 15169 15169 16548
R2 0.745 0.772 0.772 0.744
R2 Adj. 0.721 0.749 0.749 0.720
R2 Within 0.060 0.026 0.025 0.057
R2 Within Adj. 0.059 0.024 0.023 0.056
AIC −18701.4 −18895.4 −18877.9 −18651.2
BIC −7732.1 −8042.2 −8024.6 −7666.5
RMSE 0.13 0.12 0.12 0.13
Std.Errors by: participant_label by: participant_label by: participant_label by: participant_label
FE: city_eng X X X X
FE: participant_label X X X X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

#Plotting km vs probability to return all

Exploring knowledge effect

Correspondence Between Values and Their Meanings
Value Meaning
0 I live/lived/visited this region
1 From family and friends
2 From social media (vk, Instagram, etc.)
3 From mass media (newspapers, television, internet media, etc.)
4 At school or university
5 Other sources

knowledge_city 0 1 6 2 4 3 5
Arkhangelsk 1% 3% 96% NA NA NA NA
Chelyabinsk 1% 1% 94% 4% NA NA NA
Ekaterinburg 1% 3% 96% NA NA NA NA
Irkutsk 7% NA 93% NA NA NA NA
Kaliningrad NA NA 96% 4% NA NA NA
Kazan' 0% 2% 95% 2% 1% NA NA
Khabarovsk NA 1% 98% 2% NA NA NA
Krasnodar 1% 4% 93% 2% NA NA NA
Krasnoyarsk 3% 3% 92% 1% NA 1% NA
Makhachkala NA 4% 88% 2% 4% 2% NA
Moscow 1% 4% 89% 3% 1% 2% 1%
Nnovgorod NA 6% 93% NA NA 1% NA
Novosibirsk 0% 3% 95% 1% NA 1% NA
Omsk 2% NA 96% 1% NA NA NA
Perm' NA 3% 95% 1% NA 0% NA
Rostov-Na-Donu 0% 0% 98% 0% NA 0% 0%
Sochi NA 4% 96% NA NA NA NA
St. Petersburg 0% 6% 90% 1% 2% 1% NA
Ufa NA 2% 98% NA NA NA NA
Vladivostok 1% 4% 94% 1% NA 1% NA
Volgograd 1% NA 99% NA NA NA NA
Voronezh 0% 3% 96% NA NA 0% NA

Check if knowledge intensity affects decisions

 [1] "participant_label"    "city_eng"             "wave"                
 [4] "target_city_code"     "value"                "target_city"         
 [7] "home_city"            "distance"             "value_standardized"  
[10] "value_binary"         "source_median_salary" "target_median_salary"
[13] "diff_salary"          "abs_diff_salary"      "knowledge_intensity" 
DV: odds to send full endowment
Home city only Distance without home cities Distance+diff in income Full
home_cityhome 12.962***
(1.739)
target_cityChelyabinsk 0.700 0.581+ 0.769 0.900
(0.202) (0.182) (0.238) (0.250)
target_cityEkaterinburg 1.471** 1.233 1.536*** 1.578***
(0.192) (0.169) (0.196) (0.189)
target_cityIrkutsk 0.692 1.036 1.320 1.731+
(0.205) (0.346) (0.429) (0.524)
target_cityKaliningrad 1.004 1.430 1.879* 1.921*
(0.270) (0.412) (0.533) (0.499)
target_cityKazan' 0.704* 0.579*** 0.773+ 0.747*
(0.096) (0.086) (0.108) (0.097)
target_cityKhabarovsk 1.060 2.324*** 2.857*** 5.662***
(0.135) (0.487) (0.595) (1.249)
target_cityKrasnodar 0.645+ 0.612+ 0.956 1.091
(0.166) (0.171) (0.260) (0.279)
target_cityKrasnoyarsk 0.746 0.974 1.162 1.387
(0.216) (0.303) (0.351) (0.394)
target_cityMakhachkala 0.217*** 0.226*** 0.308*** 0.305***
(0.033) (0.037) (0.067) (0.061)
target_cityMoscow 0.452*** 0.326*** 0.367** 0.404**
(0.071) (0.056) (0.113) (0.117)
target_cityNnovgorod 0.860 0.747 0.976 1.139
(0.232) (0.218) (0.281) (0.299)
target_cityNovosibirsk 1.073 1.225 1.542** 1.726***
(0.133) (0.168) (0.203) (0.215)
target_cityOmsk 0.764 0.750 0.989 1.132
(0.217) (0.227) (0.300) (0.317)
target_cityPerm' 0.706** 0.604*** 0.716** 0.757*
(0.087) (0.077) (0.092) (0.090)
target_cityRostov-Na-Donu 0.921 0.800 1.148 1.257+
(0.114) (0.109) (0.160) (0.158)
target_citySochi 0.406*** 0.364*** 0.615+ 0.644+
(0.105) (0.100) (0.163) (0.159)
target_citySt. Petersburg 1.712*** 1.377+ 1.693** 1.821**
(0.254) (0.226) (0.337) (0.335)
target_cityUfa 0.443** 0.364*** 0.459** 0.623*
(0.111) (0.102) (0.125) (0.150)
target_cityVladivostok 1.222 2.820*** 3.791*** 6.995***
(0.152) (0.611) (0.791) (1.576)
target_cityVolgograd 0.771 0.781 1.183 1.102
(0.210) (0.226) (0.348) (0.292)
target_cityVoronezh 0.842 0.781*
(0.096) (0.098)
distance 0.792*** 0.752*** 0.627***
(0.032) (0.029) (0.026)
knowledge_intensity 1.166***
(0.024)
diff_salary 1.013 1.007
(0.008) (0.007)
Num.Obs. 11064 8767 8811 11064
R2 0.300 0.239 0.232 0.283
R2 Adj. 0.173 0.100 0.093 0.156
R2 Within 0.098 0.058 0.049 0.076
R2 Within Adj. 0.094 0.053 0.045 0.072
AIC 12512.7 10861.0 10998.9 12769.8
BIC 19568.2 16814.3 16977.6 19825.3
RMSE 0.40 0.42 0.42 0.40
Std.Errors by: participant_label by: participant_label by: participant_label by: participant_label
FE: city_eng X X X X
FE: participant_label X X X X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001