# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("X", "ZEUS", "CMC", "TSLA", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CMC" "GOOG" "TSLA" "X" "ZEUS"
weights <- c(0.20, 0.25, 0.2, 0.2, 0.15)
weights
## [1] 0.20 0.25 0.20 0.20 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 CMC 0.2
## 2 GOOG 0.25
## 3 TSLA 0.2
## 4 X 0.2
## 5 ZEUS 0.15
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 Ă— 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0404
## 2 2013-02-28 -0.0202
## 3 2013-03-28 0.0174
## 4 2013-04-30 0.0207
## 5 2013-05-31 0.178
## 6 2013-06-28 0.00592
## 7 2013-07-31 0.0752
## 8 2013-08-30 0.0226
## 9 2013-09-30 0.0995
## 10 2013-10-31 0.0544
## # ℹ 50 more rows
portfolio_skew_tidyquant_builitin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builitin_percent
## # A tibble: 1 Ă— 1
## Skewness
## <dbl>
## 1 0.442
asset_skewness_tbl <- asset_return_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 Ă— 2
## asset skew
## <chr> <dbl>
## 1 CMC 1.18
## 2 GOOG 0.784
## 3 TSLA 0.944
## 4 X 0.364
## 5 ZEUS 0.153
## 6 Portfolio 0.442
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Yes, the stock CMC has a much higher skewness than my portfolio and even the other assets. It has a larger range of returns where it has a extreme positive return and returns that deviate negetively in a more extreme way as well. This makes the asset look to be more volatile and risky where you don’t know exactly what you are going to get in terms of a return.