RI_CLPM Example

Author

Ty Partridge, Ph.D.

setwd("C:/Work Files/8190 MLM/Fall 2024/R Code and Examples")
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lavaan)
This is lavaan 0.6-18
lavaan is FREE software! Please report any bugs.
library(psych)

Attaching package: 'psych'

The following object is masked from 'package:lavaan':

    cor2cov

The following objects are masked from 'package:ggplot2':

    %+%, alpha
library(knitr)
library(kableExtra)

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

    group_rows
library(lavaanPlot)
library(corrplot)
corrplot 0.95 loaded
RI_CLPM_Data <-read.csv("RI_CLPM data.csv")
head(RI_CLPM_Data)
  ID      X1_1     X1_2      X1_3      X1_4      X1_5      Y1_1     Y1_2
1  1  0.146118 0.101487  0.293875  0.179214  0.101160 -0.098501 0.461699
2  2  0.199538 0.174609  0.245947  0.311929  0.345243  0.401786 0.307111
3  3 -0.236111 0.186394 -0.150179 -0.280665 -0.294195 -0.008738 0.574673
4  4  0.418547 0.010475  0.087123  0.202448  0.190860  0.385775 0.035733
5  5  0.257057 0.274397  0.173706  0.144743  0.149408  0.600394 0.437379
6  6  0.757936 0.161540 -0.056032 -0.020761  0.188245  0.029327 0.656981
       Y1_3     Y1_4      Y1_5
1 -0.327241 0.053864 -0.060264
2  0.582601 0.246816  0.281764
3  0.434179 0.525106  0.171506
4  0.098704 0.518664  0.322222
5  0.842866 0.700347  0.502234
6  0.219725 0.682058  0.270192
str(RI_CLPM_Data)
'data.frame':   1189 obs. of  11 variables:
 $ ID  : int  1 2 3 4 5 6 7 8 9 10 ...
 $ X1_1: num  0.146 0.2 -0.236 0.419 0.257 ...
 $ X1_2: num  0.1015 0.1746 0.1864 0.0105 0.2744 ...
 $ X1_3: num  0.2939 0.2459 -0.1502 0.0871 0.1737 ...
 $ X1_4: num  0.179 0.312 -0.281 0.202 0.145 ...
 $ X1_5: num  0.101 0.345 -0.294 0.191 0.149 ...
 $ Y1_1: num  -0.0985 0.40179 -0.00874 0.38577 0.60039 ...
 $ Y1_2: num  0.4617 0.3071 0.5747 0.0357 0.4374 ...
 $ Y1_3: num  -0.3272 0.5826 0.4342 0.0987 0.8429 ...
 $ Y1_4: num  0.0539 0.2468 0.5251 0.5187 0.7003 ...
 $ Y1_5: num  -0.0603 0.2818 0.1715 0.3222 0.5022 ...
describe(RI_CLPM_Data[,-1])
     vars    n mean   sd median trimmed  mad   min  max range  skew kurtosis
X1_1    1 1189 0.24 0.25   0.23    0.24 0.26 -0.46 0.99  1.46  0.07    -0.23
X1_2    2 1189 0.17 0.20   0.17    0.17 0.21 -0.41 0.84  1.25  0.10    -0.12
X1_3    3 1189 0.19 0.20   0.19    0.19 0.20 -0.50 0.94  1.44 -0.03     0.03
X1_4    4 1189 0.12 0.21   0.12    0.12 0.21 -0.51 0.84  1.35 -0.10    -0.04
X1_5    5 1189 0.11 0.21   0.11    0.11 0.21 -0.48 0.81  1.30  0.08    -0.11
Y1_1    6 1189 0.34 0.31   0.32    0.33 0.32 -0.63 1.37  2.00  0.08    -0.01
Y1_2    7 1189 0.35 0.32   0.34    0.35 0.34 -0.57 1.43  2.00  0.07    -0.16
Y1_3    8 1189 0.32 0.33   0.31    0.32 0.33 -0.71 1.62  2.33  0.11     0.23
Y1_4    9 1189 0.38 0.34   0.38    0.38 0.35 -0.63 1.41  2.03  0.07    -0.13
Y1_5   10 1189 0.39 0.33   0.38    0.38 0.33 -0.63 1.32  1.95  0.07    -0.28
       se
X1_1 0.01
X1_2 0.01
X1_3 0.01
X1_4 0.01
X1_5 0.01
Y1_1 0.01
Y1_2 0.01
Y1_3 0.01
Y1_4 0.01
Y1_5 0.01
cor_matrix <- cor(RI_CLPM_Data[,-1]) 
corrplot(cor_matrix, method = "circle",addCoef.col = "black")

RI_CLPM_long <-RI_CLPM_Data %>%
  pivot_longer(
    cols = starts_with (c("X1_","Y1_")), # Select columns for X1 and Y1
    names_to = c(".value", "Wave"),               # .value keeps X1 and Y1, Wave will be new column
    names_sep = "_"                               # Separator for variable and wave number
  )

str(RI_CLPM_long)
tibble [5,945 × 4] (S3: tbl_df/tbl/data.frame)
 $ ID  : int [1:5945] 1 1 1 1 1 2 2 2 2 2 ...
 $ Wave: chr [1:5945] "1" "2" "3" "4" ...
 $ X1  : num [1:5945] 0.146 0.101 0.294 0.179 0.101 ...
 $ Y1  : num [1:5945] -0.0985 0.4617 -0.3272 0.0539 -0.0603 ...
RI_CLPM_long$Wave <- as.numeric(RI_CLPM_long$Wave)
RI_CLPM_long <-as.data.frame(RI_CLPM_long)
# Plotting individual trajectories (spaghetti plot)
ggplot(RI_CLPM_long, aes(x = Wave, y = X1)) +
  geom_line(alpha = 0.03, color = "blue") + # Individual lines
  stat_summary(fun = mean, geom = "line", color = "darkblue", size = .3) + # Group average
  labs(title = "Plot for X1",
       x = "Wave", y = "X1") +
  theme_minimal()
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.

# Repeat for Y variable
ggplot(RI_CLPM_long, aes(x = Wave, y = Y1)) +
  geom_line(alpha = 0.03, color = "red") + # Individual lines
  stat_summary(fun = mean, geom = "line", color = "darkred", size = .3) + # Group average
  labs(title = "Plot for Y1",
       x = "Wave", y = "Y1") +
  theme_minimal()

# Plotting individual trajectories (spaghetti plot)
ggplot(RI_CLPM_long, aes(x = Wave, y = X1, group = ID)) +
  geom_line(alpha = 0.03, color = "blue") + # Individual lines
  stat_summary(fun = mean, geom = "line", color = "darkblue", size = .3) + # Group average
  labs(title = "Spaghetti Plot for X1",
       x = "Wave", y = "X1") +
  theme_minimal()

# Repeat for Y variable
ggplot(RI_CLPM_long, aes(x = Wave, y = Y1, group = ID)) +
  geom_line(alpha = 0.03, color = "red") + # Individual lines
  stat_summary(fun = mean, geom = "line", color = "darkred", size = .03) + # Group average
  labs(title = "Spaghetti Plot for Y1",
       x = "Wave", y = "Y1") +
  theme_minimal()

X_lgc_model <-'
              I =~ 1*X1_1 + 1*X1_2 + 1*X1_3 + 1*X1_4 + 1*X1_5
              S =~ 0*X1_1 + 1*X1_2 + 2*X1_3 + 3*X1_4 + 4*X1_5
              
'

X_lgc_fit <- growth(X_lgc_model, estimator= "ML", data=RI_CLPM_Data, mimic = "Mplus", missing = "FIML")
summary(X_lgc_fit, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-18 ended normally after 84 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        10

  Number of observations                          1189
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                               148.118
  Degrees of freedom                                10
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1040.437
  Degrees of freedom                                10
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.866
  Tucker-Lewis Index (TLI)                       0.866
                                                      
  Robust Comparative Fit Index (CFI)             0.866
  Robust Tucker-Lewis Index (TLI)                0.866

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               1203.186
  Loglikelihood unrestricted model (H1)       1277.244
                                                      
  Akaike (AIC)                               -2386.371
  Bayesian (BIC)                             -2335.562
  Sample-size adjusted Bayesian (SABIC)      -2367.326

Root Mean Square Error of Approximation:

  RMSEA                                          0.108
  90 Percent confidence interval - lower         0.093
  90 Percent confidence interval - upper         0.123
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    0.999
                                                      
  Robust RMSEA                                   0.108
  90 Percent confidence interval - lower         0.093
  90 Percent confidence interval - upper         0.123
  P-value H_0: Robust RMSEA <= 0.050             0.000
  P-value H_0: Robust RMSEA >= 0.080             0.999

Standardized Root Mean Square Residual:

  SRMR                                           0.056

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  I =~                                                                  
    X1_1              1.000                               0.157    0.628
    X1_2              1.000                               0.157    0.768
    X1_3              1.000                               0.157    0.773
    X1_4              1.000                               0.157    0.760
    X1_5              1.000                               0.157    0.750
  S =~                                                                  
    X1_1              0.000                               0.000    0.000
    X1_2              1.000                               0.044    0.215
    X1_3              2.000                               0.088    0.432
    X1_4              3.000                               0.131    0.637
    X1_5              4.000                               0.175    0.838

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  I ~~                                                                  
    S                -0.004    0.001   -7.810    0.000   -0.626   -0.626

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    I                 0.225    0.006   37.041    0.000    1.434    1.434
    S                -0.030    0.002  -15.049    0.000   -0.691   -0.691

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .X1_1              0.038    0.002   17.568    0.000    0.038    0.606
   .X1_2              0.024    0.001   18.070    0.000    0.024    0.571
   .X1_3              0.026    0.001   20.485    0.000    0.026    0.634
   .X1_4              0.026    0.001   19.693    0.000    0.026    0.622
   .X1_5              0.023    0.002   14.702    0.000    0.023    0.522
    I                 0.025    0.002   13.131    0.000    1.000    1.000
    S                 0.002    0.000    8.961    0.000    1.000    1.000
Y_lgc_model <-'
              I =~ 1*Y1_1 + 1*Y1_2 + 1*Y1_3 + 1*Y1_4 + 1*Y1_5
              S =~ 0*Y1_1 + 1*Y1_2 + 2*Y1_3 + 3*Y1_4 + 4*Y1_5

'

Y_lgc_fit <- growth(Y_lgc_model, estimator= "ML", data=RI_CLPM_Data, mimic = "Mplus", missing = "FIML")
summary(Y_lgc_fit, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-18 ended normally after 64 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        10

  Number of observations                          1189
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                               150.491
  Degrees of freedom                                10
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1503.954
  Degrees of freedom                                10
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.906
  Tucker-Lewis Index (TLI)                       0.906
                                                      
  Robust Comparative Fit Index (CFI)             0.906
  Robust Tucker-Lewis Index (TLI)                0.906

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1118.842
  Loglikelihood unrestricted model (H1)      -1043.596
                                                      
  Akaike (AIC)                                2257.684
  Bayesian (BIC)                              2308.492
  Sample-size adjusted Bayesian (SABIC)       2276.729

Root Mean Square Error of Approximation:

  RMSEA                                          0.109
  90 Percent confidence interval - lower         0.094
  90 Percent confidence interval - upper         0.124
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    0.999
                                                      
  Robust RMSEA                                   0.109
  90 Percent confidence interval - lower         0.094
  90 Percent confidence interval - upper         0.124
  P-value H_0: Robust RMSEA <= 0.050             0.000
  P-value H_0: Robust RMSEA >= 0.080             0.999

Standardized Root Mean Square Residual:

  SRMR                                           0.055

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  I =~                                                                  
    Y1_1              1.000                               0.206    0.646
    Y1_2              1.000                               0.206    0.646
    Y1_3              1.000                               0.206    0.620
    Y1_4              1.000                               0.206    0.632
    Y1_5              1.000                               0.206    0.602
  S =~                                                                  
    Y1_1              0.000                               0.000    0.000
    Y1_2              1.000                               0.057    0.180
    Y1_3              2.000                               0.115    0.346
    Y1_4              3.000                               0.172    0.528
    Y1_5              4.000                               0.230    0.671

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  I ~~                                                                  
    S                -0.003    0.001   -3.065    0.002   -0.248   -0.248

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    I                 0.328    0.008   40.396    0.000    1.592    1.592
    S                 0.014    0.003    5.301    0.000    0.249    0.249

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Y1_1              0.059    0.004   16.581    0.000    0.059    0.583
   .Y1_2              0.062    0.003   19.996    0.000    0.062    0.608
   .Y1_3              0.066    0.003   20.745    0.000    0.066    0.602
   .Y1_4              0.052    0.003   18.770    0.000    0.052    0.488
   .Y1_5              0.046    0.003   13.675    0.000    0.046    0.388
    I                 0.042    0.003   12.440    0.000    1.000    1.000
    S                 0.003    0.000    8.174    0.000    1.000    1.000
RICLPM <- '
  # Create between components (random intercepts)
  RIx =~ 1*X1_1 + 1*X1_2 + 1*X1_3 + 1*X1_4 + 1*X1_5
  RIy =~ 1*Y1_1 + 1*Y1_2 + 1*Y1_3 + 1*Y1_4 + 1*Y1_5
  
  # Create within-person centered variables
  w_X1_1 =~ 1*X1_1
  w_X1_2 =~ 1*X1_2
  w_X1_3 =~ 1*X1_3 
  w_X1_4 =~ 1*X1_4
  w_X1_5 =~ 1*X1_5
  w_Y1_1 =~ 1*Y1_1
  w_Y1_2 =~ 1*Y1_2
  w_Y1_3 =~ 1*Y1_3
  w_Y1_4 =~ 1*Y1_4
  w_Y1_5 =~ 1*Y1_5

  # Estimate lagged effects between within-person centered variables
  w_X1_2 + w_Y1_2 ~ a*w_X1_1 + b*w_Y1_1
  w_X1_3 + w_Y1_3 ~ a*w_X1_2 + b*w_Y1_2
  w_X1_4 + w_Y1_4 ~ a*w_X1_3 + b*w_Y1_3
  w_X1_5 + w_Y1_5 ~ a*w_X1_4 + b*w_Y1_4

  # Estimate covariance between within-person centered variables at first wave
  w_X1_1 ~~ c*w_Y1_1 # Covariance
  
  # Estimate covariances between residuals of within-person centered variables 
  # (i.e., innovations)
  w_X1_2 ~~ c*w_Y1_2
  w_X1_3 ~~ c*w_Y1_3
  w_X1_4 ~~ c*w_Y1_4
  w_X1_5 ~~ c*w_Y1_5
  
  # Estimate variance and covariance of random intercepts
  RIx ~~ RIx
  RIy ~~ RIy
  RIx ~~ RIy

  # Estimate (residual) variance of within-person centered variables
  w_X1_1 ~~ w_X1_1 # Variances
  w_Y1_1 ~~ w_Y1_1 
  w_X1_2 ~~ w_X1_2 # Residual variances
  w_Y1_2 ~~ w_Y1_2 
  w_X1_3 ~~ w_X1_3 
  w_Y1_3 ~~ w_Y1_3 
  w_X1_4 ~~ w_X1_4 
  w_Y1_4 ~~ w_Y1_4 
  w_X1_5 ~~ w_X1_5
  w_Y1_5 ~~ w_Y1_5
'

RICLPM_fit <- growth(RICLPM, estimator= "ML", data=RI_CLPM_Data, mimic = "Mplus", missing = "FIML")
Warning: lavaan->lav_object_post_check():  
   some estimated ov variances are negative
summary(RICLPM_fit, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-18 ended normally after 346 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        60
  Number of equality constraints                    18

  Number of observations                          1189
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                               168.305
  Degrees of freedom                                23
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              3166.400
  Degrees of freedom                                45
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.953
  Tucker-Lewis Index (TLI)                       0.909
                                                      
  Robust Comparative Fit Index (CFI)             0.955
  Robust Tucker-Lewis Index (TLI)                0.911

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)                460.500
  Loglikelihood unrestricted model (H1)        544.652
                                                      
  Akaike (AIC)                                -837.000
  Bayesian (BIC)                              -623.603
  Sample-size adjusted Bayesian (SABIC)       -757.011

Root Mean Square Error of Approximation:

  RMSEA                                          0.073
  90 Percent confidence interval - lower         0.063
  90 Percent confidence interval - upper         0.083
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    0.136
                                                      
  Robust RMSEA                                   0.072
  90 Percent confidence interval - lower         0.061
  90 Percent confidence interval - upper         0.083
  P-value H_0: Robust RMSEA <= 0.050             0.001
  P-value H_0: Robust RMSEA >= 0.080             0.126

Standardized Root Mean Square Residual:

  SRMR                                           0.034

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  RIx =~                                                                
    X1_1              1.000                               0.095    0.390
    X1_2              1.000                               0.095    0.466
    X1_3              1.000                               0.095    0.476
    X1_4              1.000                               0.095    0.461
    X1_5              1.000                               0.095    0.449
  RIy =~                                                                
    Y1_1              1.000                               0.212    0.690
    Y1_2              1.000                               0.212    0.631
    Y1_3              1.000                               0.212    0.646
    Y1_4              1.000                               0.212    0.651
    Y1_5              1.000                               0.212    0.632
  w_X1_1 =~                                                             
    X1_1              1.000                               0.259    1.056
  w_X1_2 =~                                                             
    X1_2              1.000                               0.239    1.166
  w_X1_3 =~                                                             
    X1_3              1.000                               0.255    1.271
  w_X1_4 =~                                                             
    X1_4              1.000                               0.282    1.364
  w_X1_5 =~                                                             
    X1_5              1.000                               0.182    0.855
  w_Y1_1 =~                                                             
    Y1_1              1.000                               0.781    2.538
  w_Y1_2 =~                                                             
    Y1_2              1.000                               1.283    3.813
  w_Y1_3 =~                                                             
    Y1_3              1.000                               1.095    3.332
  w_Y1_4 =~                                                             
    Y1_4              1.000                               1.588    4.875
  w_Y1_5 =~                                                             
    Y1_5              1.000                               0.179    0.532

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  w_X1_2 ~                                                              
    w_X1_1     (a)    0.128    0.138    0.925    0.355    0.138    0.138
    w_Y1_1     (b)    0.003    0.054    0.054    0.957    0.010    0.010
  w_Y1_2 ~                                                              
    w_X1_1     (a)    0.128    0.138    0.925    0.355    0.026    0.026
    w_Y1_1     (b)    0.003    0.054    0.054    0.957    0.002    0.002
  w_X1_3 ~                                                              
    w_X1_2     (a)    0.128    0.138    0.925    0.355    0.119    0.119
    w_Y1_2     (b)    0.003    0.054    0.054    0.957    0.015    0.015
  w_Y1_3 ~                                                              
    w_X1_2     (a)    0.128    0.138    0.925    0.355    0.028    0.028
    w_Y1_2     (b)    0.003    0.054    0.054    0.957    0.003    0.003
  w_X1_4 ~                                                              
    w_X1_3     (a)    0.128    0.138    0.925    0.355    0.115    0.115
    w_Y1_3     (b)    0.003    0.054    0.054    0.957    0.011    0.011
  w_Y1_4 ~                                                              
    w_X1_3     (a)    0.128    0.138    0.925    0.355    0.020    0.020
    w_Y1_3     (b)    0.003    0.054    0.054    0.957    0.002    0.002
  w_X1_5 ~                                                              
    w_X1_4     (a)    0.128    0.138    0.925    0.355    0.198    0.198
    w_Y1_4     (b)    0.003    0.054    0.054    0.957    0.025    0.025
  w_Y1_5 ~                                                              
    w_X1_4     (a)    0.128    0.138    0.925    0.355    0.202    0.202
    w_Y1_4     (b)    0.003    0.054    0.054    0.957    0.026    0.026

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  w_X1_1 ~~                                                             
    w_Y1_1     (c)    0.013    0.001   14.934    0.000    0.062    0.062
 .w_X1_2 ~~                                                             
   .w_Y1_2     (c)    0.013    0.001   14.934    0.000    0.042    0.042
 .w_X1_3 ~~                                                             
   .w_Y1_3     (c)    0.013    0.001   14.934    0.000    0.046    0.046
 .w_X1_4 ~~                                                             
   .w_Y1_4     (c)    0.013    0.001   14.934    0.000    0.028    0.028
 .w_X1_5 ~~                                                             
   .w_Y1_5     (c)    0.013    0.001   14.934    0.000    0.405    0.405
  RIx ~~                                                                
    RIy               0.010    0.002    5.240    0.000    0.479    0.479
    w_X1_1            0.003    0.001    2.197    0.028    0.120    0.120
    w_Y1_1            0.002    0.002    1.023    0.306    0.023    0.023
  RIy ~~                                                                
    w_X1_1            0.004    0.002    2.146    0.032    0.069    0.069
    w_Y1_1           -0.013    0.003   -4.653    0.000   -0.076   -0.076

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    RIx               0.134    0.012   11.182    0.000    1.406    1.406
    RIy               0.289    0.020   14.101    0.000    1.361    1.361
    w_X1_1            0.107    0.013    8.386    0.000    0.412    0.412
   .w_X1_2            0.025    0.015    1.647    0.100    0.105    0.105
   .w_X1_3            0.047    0.009    5.389    0.000    0.183    0.183
   .w_X1_4           -0.024    0.011   -2.247    0.025   -0.086   -0.086
   .w_X1_5           -0.022    0.009   -2.540    0.011   -0.120   -0.120
    w_Y1_1            0.047    0.021    2.272    0.023    0.061    0.061
   .w_Y1_2            0.046    0.024    1.901    0.057    0.036    0.036
   .w_Y1_3            0.025    0.024    1.057    0.291    0.023    0.023
   .w_Y1_4            0.089    0.022    4.009    0.000    0.056    0.056
   .w_Y1_5            0.101    0.028    3.648    0.000    0.565    0.565

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    RIx               0.009    0.002    5.198    0.000    1.000    1.000
    RIy               0.045    0.003   14.754    0.000    1.000    1.000
    w_X1_1            0.067    0.071    0.944    0.345    1.000    1.000
    w_Y1_1            0.609   11.152    0.055    0.956    1.000    1.000
   .w_X1_2            0.056    0.053    1.044    0.296    0.981    0.981
   .w_Y1_2            1.645   30.368    0.054    0.957    0.999    0.999
   .w_X1_3            0.064    0.058    1.097    0.273    0.985    0.985
   .w_Y1_3            1.197   22.068    0.054    0.957    0.999    0.999
   .w_X1_4            0.079    0.080    0.985    0.325    0.986    0.986
   .w_Y1_4            2.522   46.731    0.054    0.957    1.000    1.000
   .w_X1_5            0.032    0.001   38.271    0.000    0.960    0.960
   .w_Y1_5            0.031    0.002   19.924    0.000    0.958    0.958
   .X1_1             -0.022    0.071   -0.311    0.756   -0.022   -0.365
   .X1_2             -0.025    0.053   -0.471    0.638   -0.025   -0.594
   .X1_3             -0.034    0.059   -0.579    0.562   -0.034   -0.844
   .X1_4             -0.046    0.080   -0.577    0.564   -0.046   -1.072
   .X1_5              0.003    0.001    3.700    0.000    0.003    0.068
   .Y1_1             -0.534   11.152   -0.048    0.962   -0.534   -5.650
   .Y1_2             -1.579   30.368   -0.052    0.959   -1.579  -13.943
   .Y1_3             -1.135   22.068   -0.051    0.959   -1.135  -10.519
   .Y1_4             -2.461   46.731   -0.053    0.958   -2.461  -23.189
   .Y1_5              0.036    0.002   23.290    0.000    0.036    0.317