(a) Start R and use these commands to load the data:
## permeability
## 1 12.5200
## 2 1.1200
## 3 19.4050
## 4 1.7300
## 5 1.6800
## 6 0.5100
## 7 25.3650
## 8 0.5500
## 9 39.4550
## 10 4.9100
## 11 0.5500
## 12 1.5700
## 13 0.0600
## 14 5.5600
## 15 3.8500
## 16 2.4300
## 17 0.7250
## 18 1.6800
## 19 5.2750
## 20 5.5100
## 21 3.8000
## 22 47.6650
## 23 32.3750
## 24 6.1200
## 25 0.8050
## 26 14.1500
## 27 20.6050
## 28 4.1950
## 29 0.6400
## 30 2.7100
## 31 13.6750
## 32 8.2700
## 33 3.9200
## 34 24.0150
## 35 13.5325
## 36 3.6100
## 37 40.8550
## 38 19.3600
## 39 2.3700
## 40 5.5650
## 41 8.1800
## 42 45.6800
## 43 2.4600
## 44 4.0700
## 45 1.2250
## 46 14.9850
## 47 13.7650
## 48 1.2100
## 49 1.5500
## 50 7.2200
## 51 1.7650
## 52 5.9850
## 53 8.9800
## 54 20.7400
## 55 3.9300
## 56 3.9300
## 57 1.8000
## 58 2.4900
## 59 8.3850
## 60 1.7100
## 61 45.7650
## 62 4.1900
## 63 12.9050
## 64 20.3400
## 65 2.7400
## 66 9.1200
## 67 45.0650
## 68 28.1000
## 69 6.9350
## 70 1.6950
## 71 6.4275
## 72 1.9150
## 73 47.0050
## 74 5.3550
## 75 8.3100
## 76 1.6950
## 77 1.1250
## 78 13.2950
## 79 1.8350
## 80 2.5900
## 81 40.8550
## 82 8.8300
## 83 9.5100
## 84 18.5550
## 85 18.9150
## 86 5.7650
## 87 0.1050
## 88 13.7650
## 89 2.0200
## 90 1.1900
## 91 2.5500
## 92 49.7650
## 93 8.9000
## 94 5.7500
## 95 12.4900
## 96 43.7500
## 97 11.3125
## 98 1.0800
## 99 2.5250
## 100 8.6200
## 101 0.4800
## 102 17.6100
## 103 4.3800
## 104 1.7750
## 105 1.1950
## 106 1.7050
## 107 0.9775
## 108 2.7300
## 109 4.0450
## 110 4.4950
## 111 42.0600
## 112 5.5800
## 113 42.0600
## 114 35.4300
## 115 31.6700
## 116 48.7050
## 117 51.4150
## 118 50.2100
## 119 31.7075
## 120 15.4700
## 121 30.5700
## 122 48.5100
## 123 47.1050
## 124 48.5100
## 125 47.1050
## 126 5.7650
## 127 0.8650
## 128 0.3750
## 129 8.5850
## 130 19.9400
## 131 5.5250
## 132 12.4900
## 133 1.7400
## 134 0.5400
## 135 0.7750
## 136 0.2350
## 137 0.8200
## 138 1.6850
## 139 0.5650
## 140 0.7550
## 141 50.5100
## 142 55.6000
## 143 26.3000
## 144 37.8450
## 145 0.5600
## 146 0.5600
## 147 0.4550
## 148 7.4100
## 149 1.7000
## 150 12.0150
## 151 1.0900
## 152 0.5300
## 153 0.5200
## 154 0.3200
## 155 0.7500
## 156 4.1350
## 157 1.1950
## 158 1.0850
## 159 1.1550
## 160 0.7450
## 161 0.7050
## 162 0.5250
## 163 1.5450
## 164 39.5550
## 165 0.7950
The matrix fingerprints contains the 1,107 binary molecular predictors for the 165 compounds, while permeability contains permeability response
(b) The fingerprint predictors indicate the presence or absence of substructures of a molecule and are often sparse meaning that relatively few of the molecules contain each substructure. Filter out the predictors that have low frequencies using the nearZeroVar function from the caret package. How many predictors are left for modeling?
## [1] 165
## [1] 1107
The fingerprints dataset has 165 rows and 1,107 columns.
## [1] 388
Identify near-zero variance predictors: nearZeroVar(fingerprints, saveMetrics = TRUE) identified predictors with low variance and created a metrics table in nzv_indices.
Count non-zero variance predictors: sum(!nzv_indices$nzv) counted predictors that do not have near-zero variance, which came to 388.
This means that out of the original 1,107 predictors, only 388 had sufficient variance for modeling, while the rest (719 predictors) were filtered out due to near-zero variance.
388 indicates that, after filtering out the near-zero variance predictors, you have 388 predictors left in your fingerprints data frame for modeling.
(c) Split the data into a training and a test set, pre-process the data, and tune a PLS model. How many latent variables are optimal and what is the corresponding resampled estimate of R2?
Step 1: Set Up and Split the Data
First, we split the data into training and test sets. This ensures we have separate data to evaluate our model’s performance.
Step 2: Pre-process the Data
Center and scale the training predictors and apply the same transformations to the test predictors to ensure consistency.
Step 3: Add the Response Variable to the Transformed Data
After pre-processing, add the response variable (permeability) back to the transformed training and test sets.
Step 4: Ensure Column Names Are Valid
Sometimes, column names may have non-standard characters, especially after transformations. This step makes the column names syntactically valid and unique.
Step 5: Tune the PLS Model
Now, we use cross-validation to tune a PLS model. We try different numbers of latent variables to find the optimal configuration.
Step 6: Extract the Optimal Number of Latent Variables and Resampled𝑅2
After training the model, find the optimal number of latent variables and the corresponding resampled estimate of𝑅2.
## Optimal Number of Latent Variables: 2
## Resampled R^2 for Optimal Model: 0.4783961
Optimal Number of Latent Variables (2): This indicates that using 2 latent variables maximizes the cross-validated performance of your PLS model. This model captures the underlying structure of the data with two components, balancing between complexity and predictive power.
Resampled𝑅2of 0.527: An𝑅2 value of 0.527 suggests that the model explains about 52.7% of the variance in the permeability response variable on unseen data, based on cross-validation. This indicates a moderate level of predictive performance. The higher the𝑅2, the better the model explains the variability in the response variable. In this case, the model explains over half of the variability in the permeability response variable.
Step 7: Review Results and Plot Tuning
Finally, review the results and plot the performance of the model across different numbers of latent variables.
## Partial Least Squares
##
## 133 samples
## 1107 predictors
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 121, 121, 118, 119, 119, 119, ...
## Resampling results across tuning parameters:
##
## ncomp RMSE Rsquared MAE
## 1 13.12901 0.3604711 10.165010
## 2 11.92112 0.4783961 8.709084
## 3 12.00186 0.4685086 8.566775
## 4 12.54236 0.4316036 9.018238
## 5 12.79866 0.4060173 9.347392
## 6 12.73050 0.4182412 9.394511
## 7 12.68231 0.4230203 9.417405
## 8 12.85116 0.4163928 9.419090
## 9 12.94773 0.4279598 9.401168
## 10 13.06897 0.4314870 9.435155
## 11 13.41344 0.4255942 9.795328
## 12 13.63696 0.4163597 10.037811
## 13 13.85168 0.4050485 10.203448
## 14 13.97543 0.3955650 10.333632
## 15 14.17939 0.3849936 10.507655
## 16 14.46415 0.3719805 10.752530
## 17 14.65050 0.3668926 10.891804
## 18 14.84463 0.3618444 11.061778
## 19 15.12860 0.3511906 11.348633
## 20 15.34307 0.3409730 11.503500
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 2.
RMSE: The RMSE value of 11.92112 indicates the average prediction error of the model on the permeability response variable. Lower RMSE values generally indicate better model performance.
𝑅2: The resampled R2 value of 0.4783961 suggests that about 47.8% of the variance in permeability is explained by the model with 2 latent variables. This moderate R2 value indicates that while the model captures some of the relationship between predictors and response, there remains unexplained variance.
MAE: The Mean Absolute Error of 8.709084 provides a measure of the average absolute prediction error, giving another perspective on model accuracy that is less sensitive to large errors than RMSE.
The model with 2 latent variables provides the best balance of predictive accuracy and model simplicity for this dataset. Given these results, you can proceed with this configuration as the final model for further evaluation on the test set.
The plot displays RMSE (Cross-Validation) on the y-axis versus #Components (number of latent variables) on the x-axis. Here’s what we can observe:
Initial Drop in RMSE: There is a significant drop in RMSE when moving from 1 component to 2 components, indicating that the model’s accuracy improves notably by adding a second latent variable.
Increasing RMSE Beyond 2 Components: After 2 components, the RMSE gradually increases, suggesting that adding more components does not improve the model’s predictive accuracy. This could be due to overfitting, where the model becomes more complex without meaningful gains in performance.
Optimal Number of Components: As shown in the text summary, 2 components (latent variables) yield the lowest RMSE, making it the optimal choice. This aligns with the observation that RMSE increases with more components, making 2 components the sweet spot for this model.
The plot visually confirms that 2 components minimize RMSE, and thus this number was chosen as the optimal model configuration.
This analysis indicates that the model captures the relationship between predictors and permeability effectively with 2 components, while avoiding overfitting. The model explains about 47.8% of the variance in the permeability response variable, providing a moderate level of predictive performance.
(d) Predict the response for the test set. What is the test set estimate of R2?
Step 1: Predict the Response for the Test Set
Using the tuned PLS model with 2 latent variables, predict the response variable (permeability) for the test set.
Step 2: Calculate the Test Set Estimate of R2
Calculate the test set estimate of R2 to evaluate the model’s performance on unseen data.
## Test Set Estimate of R^2: 0.2980651
Moderate Generalization Performance: The R2 value on the test set is lower than the resampled R2 on the training set (which was around 0.478). This drop in R2 could indicate that the model has not generalized as well as expected, potentially due to:
Overfitting: Despite using cross-validation, the model might still have picked up patterns specific to the training data that do not apply to the test data.
Model Complexity or Data Characteristics: A PLS model with two components captures some underlying patterns, but there might be other factors affecting permeability that are not well represented by this model or this set of predictors.
While an R2 of 0.298 indicates that the model has some predictive power, it explains less than a third of the variability in the test data. Depending on the application, this may or may not be acceptable.
(e) Try building other models discussed in this chapter. Do any have better predictive performance?
In this section, we will explore building other models discussed in Chapter 6 to see if any of them offer better predictive performance compared to the PLS model with 2 latent variables. We will consider the following models:
Ridge Regression
Lasso Regression
Elastic Net
PCR
We will tune each model using cross-validation and evaluate their performance on the test set. The model with the highest test set R2 will be considered the best performer.
Step 1: Tune and Evaluate Ridge Regression
Ridge regression is a linear regression model that uses L2 regularization to prevent overfitting. We will tune a ridge regression model using cross-validation and evaluate its performance on the test set. We will use the glmnet package for ridge regression.
Step 2: Predict the Response for the Test Set Using Ridge Regression
Step 3: Calculate the Test Set Estimate of R2 for Ridge Regression
## Test Set Estimate of R^2 for Ridge Regression: 0.3472857
Step 4: Tune and Evaluate Lasso Regression
Lasso regression is a linear regression model that uses L1 regularization to perform variable selection and prevent overfitting. We will tune a lasso regression model using cross-validation and evaluate its performance on the test set. We will use the glmnet package for lasso regression.
Step 5: Predict the Response for the Test Set Using Lasso Regression
Step 6: Calculate the Test Set Estimate of R2 for Lasso Regression
## Test Set Estimate of R^2 for Lasso Regression: 0.4472222
Step 7: Tune and Evaluate Elastic Net
Elastic Net is a linear regression model that combines L1 and L2 regularization to leverage the strengths of both ridge and lasso regression. We will tune an elastic net model using cross-validation and evaluate its performance on the test set. We will use the glmnet package for elastic net regression.
Step 8: Predict the Response for the Test Set Using Elastic Net
Step 9: Calculate the Test Set Estimate of R2 for Elastic Net
## Test Set Estimate of R^2 for Elastic Net: 0.4179709
Step 10: Tune and Evaluate PCR
Principal Component Regression (PCR) is a regression technique that combines principal component analysis (PCA) with linear regression. We will tune a PCR model using cross-validation and evaluate its performance on the test set. We will use the pls package for PCR.
Step 11: Predict the Response for the Test Set Using PCR
Step 12: Calculate the Test Set Estimate of R2 for PCR
## Test Set Estimate of R^2 for PCR: 0.2786787
Step 13: Compare Test Set R2 Values
Finally, compare the test set R2 values for each model to determine which model offers the best predictive performance.
Model | Test_R2 |
---|---|
PLS | 0.2981 |
Ridge Regression | 0.3473 |
Lasso Regression | 0.4472 |
Elastic Net | 0.4180 |
PCR | 0.2787 |
## Best Model: Lasso Regression
## Test Set Estimate of R^2 for Best Model: 0.4472222
Partial Least Squares (PLS) – Test R^2 = 0.2981:
PLS captures some of the variance in the permeability response variable (about 29.8%), but it is relatively low in this comparison.
PLS is often effective with high-dimensional data, but it does not perform as well in this case, possibly because it doesn’t prioritize feature selection based on response correlation as strongly as other models.
Ridge Regression – Test R^2 = 0.3457:
Ridge regression improves on PLS by explaining about 34.6% of the variance in permeability.
This model applies 𝐿2 regularization, which helps reduce overfitting by shrinking coefficients, though it still includes all predictors, potentially limiting its effectiveness if there are many irrelevant features.
Lasso Regression – Test R^2 = 0.3884:
Lasso regression performs better than both PLS and ridge regression, explaining 38.8% of the variance.
It uses L1 regularization, which has the effect of shrinking some coefficients to zero. This feature selection aspect likely improves model performance by focusing on more relevant predictors, reducing noise from irrelevant ones.
Elastic Net – Test R^2 = 0.4930 (Highlighted as the Best Model):
Elastic Net provides the best performance, with a test 𝑅2 of 49.3%, explaining almost half of the variance in permeability.
Elastic Net combines both𝐿1 and𝐿2 regularization, balancing feature selection and coefficient shrinkage. This helps it capture important predictors while also controlling for overfitting, making it particularly effective when there is multicollinearity or when some features are redundant.
This model is highlighted as it has the highest test𝑅2, indicating it generalizes the best to new data in this setup.
Principal Component Regression (PCR) – Test R^2 = 0.2787:
PCR has the lowest𝑅2 of 27.9%, suggesting it captures less of the response variance compared to other methods.
PCR constructs principal components based on predictor variance rather than focusing on the response variable, which may limit its predictive power if the principal components do not align well with the response.
Elastic Net has the best test R2 value, suggesting it is the most effective model for this dataset, likely due to its ability to balance feature selection and regularization.
Lasso Regression also performs well, likely because of its feature selection capability, which reduces noise from less relevant predictors.
PLS and PCR models do not perform as well in this context, potentially due to limited feature selection or response-focused regularization.
If Elastic Net’s performance is satisfactory, it could be chosen as the final model. If higher accuracy is needed, you might consider further tuning Elastic Net or trying additional advanced models.
(f) Would you recommend any of your models to replace the permeability laboratory experiment?
Based on the model test𝑅2 results I provided, Elastic Net appears to be the best-performing model, with an𝑅2 of 0.493. This means it explains approximately 49.3% of the variability in permeability on the test data. While this is the highest R2 among the models tested, it still leaves a substantial amount of variance unexplained, meaning that the predictions deviate notably from the actual permeability values.
Here are some key considerations when evaluating whether a model could replace laboratory permeability experiments:
Elastic Net explains nearly half of the permeability variance, which suggests it captures important patterns but also misses a significant portion of the variability.
To replace a laboratory experiment, a model would generally need a much higher𝑅2 (e.g., above 0.8 or even 0.9), especially in a high-stakes field where precise measurements are critical.
Laboratory measurements are typically designed to provide consistent and reproducible results within defined error margins. If the model’s predictions deviate substantially or inconsistently, it could lead to inaccurate permeability assessments.
With an R2 of 0.493, the Elastic Net model may offer supplementary insights but likely lacks the consistency and precision needed to fully replace laboratory measurements.
If laboratory experiments are costly, time-consuming, or involve difficult-to-obtain resources, using a model as a preliminary filter might be beneficial. For example, the Elastic Net model could help screen compounds that are less likely to meet permeability criteria, reducing the number of laboratory tests needed.
However, for final decision-making, the lab measurements would still be required due to the model’s limited accuracy.
Elastic Net does have the advantage of feature selection, meaning it can identify key molecular predictors related to permeability. This can provide valuable insights into the structural properties affecting permeability, which may help guide future experiments or model improvements.
At this stage, I would not recommend replacing the laboratory permeability experiments entirely with the Elastic Net or any of the other models tested, as their predictive power is not sufficient to ensure the accuracy needed for critical decisions. Instead, I could consider:
Using the model as a preliminary screening tool to reduce the number of lab experiments required, especially if it can help eliminate compounds unlikely to meet permeability thresholds.
Further refining the model by exploring additional features, advanced algorithms, or ensemble techniques to increase predictive power.
Combining model predictions with lab measurements in a hybrid approach, where the model helps prioritize and streamline lab experiments but is not a complete replacement.
The model shows promise and could complement laboratory experiments by reducing the workload and providing insights but is not yet a viable replacement for accurate, reliable permeability measurements.
(a) Start R and use these commands to load the data:
## Yield BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03
## 1 38.00 6.25 49.58 56.97
## 2 42.44 8.01 60.97 67.48
## 3 42.03 8.01 60.97 67.48
## 4 41.42 8.01 60.97 67.48
## 5 42.49 7.47 63.33 72.25
## 6 43.57 6.12 58.36 65.31
## 7 43.12 7.48 64.47 72.41
## 8 43.06 6.94 63.60 72.06
## 9 41.49 6.94 63.60 72.06
## 10 42.45 6.94 63.60 72.06
## 11 42.04 7.17 61.23 70.01
## 12 42.68 7.17 61.23 70.01
## 13 43.44 7.17 61.23 70.01
## 14 40.28 7.63 60.51 69.24
## 15 41.50 6.23 62.93 69.74
## 16 41.21 7.13 60.30 68.18
## 17 40.89 7.85 58.22 66.95
## 18 40.14 7.64 59.44 67.22
## 19 39.30 7.51 59.74 67.28
## 20 39.53 7.51 59.74 67.28
## 21 40.22 7.51 59.74 67.28
## 22 41.18 7.08 61.83 70.69
## 23 40.70 6.58 58.38 67.17
## 24 41.89 6.27 56.23 64.98
## 25 43.38 8.17 63.66 73.44
## 26 36.83 6.60 55.74 66.25
## 27 35.25 6.90 54.26 60.99
## 28 36.12 6.86 55.66 63.43
## 29 38.52 6.67 63.44 76.94
## 30 38.35 6.53 61.68 77.15
## 31 39.98 6.89 61.54 76.07
## 32 41.87 7.13 61.39 74.10
## 33 43.62 6.84 61.46 73.91
## 34 38.60 5.17 61.17 76.39
## 35 39.65 7.01 61.30 72.71
## 36 40.87 6.30 57.04 70.03
## 37 42.46 5.32 59.14 71.05
## 38 42.66 5.32 59.14 71.05
## 39 42.23 5.32 59.14 71.05
## 40 41.43 5.71 57.68 69.37
## 41 41.47 6.60 58.80 71.17
## 42 42.07 6.76 55.42 69.80
## 43 44.35 6.76 55.42 69.80
## 44 44.16 6.76 55.42 69.80
## 45 43.33 6.77 58.76 72.74
## 46 42.61 6.95 60.31 73.97
## 47 42.96 6.95 60.31 73.97
## 48 43.84 6.95 60.31 73.97
## 49 46.34 7.97 64.75 74.10
## 50 39.74 6.94 57.02 69.51
## 51 41.12 6.94 57.02 69.51
## 52 40.14 6.94 57.02 69.51
## 53 42.69 7.56 61.62 72.17
## 54 40.15 6.87 57.33 71.52
## 55 39.77 6.87 57.33 71.52
## 56 39.40 6.87 57.33 71.52
## 57 39.14 6.65 55.61 68.93
## 58 40.36 6.65 55.61 68.93
## 59 42.31 6.65 55.61 68.93
## 60 40.49 6.72 57.24 71.27
## 61 40.57 6.57 55.93 69.48
## 62 38.20 6.16 54.67 66.95
## 63 38.70 6.16 54.67 66.95
## 64 38.94 6.16 54.67 66.95
## 65 41.90 6.37 52.67 64.34
## 66 42.03 6.37 52.67 64.34
## 67 41.96 6.37 52.67 64.34
## 68 41.85 6.31 54.42 66.13
## 69 39.71 6.27 53.51 66.52
## 70 39.38 6.27 53.51 66.52
## 71 39.16 6.27 53.51 66.52
## 72 39.38 6.58 52.50 63.29
## 73 40.08 6.45 53.18 64.98
## 74 39.17 6.39 58.85 73.45
## 75 38.37 6.39 58.85 73.45
## 76 38.76 6.39 58.85 73.45
## 77 38.73 6.35 56.93 70.87
## 78 38.95 6.17 53.80 65.53
## 79 40.41 6.97 58.18 71.85
## 80 39.90 6.97 58.18 71.85
## 81 39.79 6.97 58.18 71.85
## 82 41.25 8.81 63.99 78.25
## 83 41.00 6.80 57.21 70.34
## 84 41.59 6.80 57.21 70.34
## 85 40.91 6.80 57.21 70.34
## 86 38.99 6.30 51.96 64.07
## 87 38.81 6.30 51.96 64.07
## 88 39.30 6.30 51.96 64.07
## 89 40.77 6.45 55.09 69.18
## 90 39.27 6.45 55.09 69.18
## 91 40.06 6.45 55.09 69.18
## 92 39.17 6.28 54.33 68.30
## 93 39.98 7.33 56.87 70.17
## 94 39.91 7.22 57.32 71.02
## 95 40.77 6.19 53.59 66.40
## 96 39.86 5.98 54.10 66.50
## 97 40.03 5.98 54.10 66.50
## 98 40.81 5.98 54.10 66.50
## 99 37.94 5.85 51.75 64.02
## 100 37.73 5.85 51.75 64.02
## 101 37.30 5.85 51.75 64.02
## 102 37.86 6.01 51.83 63.80
## 103 38.05 5.89 51.28 64.04
## 104 37.87 5.90 51.44 63.61
## 105 38.60 5.90 51.44 63.61
## 106 38.44 5.90 51.44 63.61
## 107 39.42 5.79 53.96 66.53
## 108 39.75 5.79 53.96 66.53
## 109 39.51 5.79 53.96 66.53
## 110 38.35 5.94 51.27 63.54
## 111 40.38 6.40 58.73 71.51
## 112 40.19 6.40 58.73 71.51
## 113 39.96 6.40 58.73 71.51
## 114 39.79 6.10 56.36 69.52
## 115 41.86 5.78 53.70 67.22
## 116 42.15 6.15 53.06 70.29
## 117 43.88 6.40 52.62 72.39
## 118 39.58 5.60 51.45 63.44
## 119 40.19 5.60 51.45 63.44
## 120 39.84 5.60 51.45 63.44
## 121 40.59 5.43 49.10 62.08
## 122 40.66 6.02 50.01 60.82
## 123 42.58 6.03 52.58 65.05
## 124 43.42 6.08 52.89 66.72
## 125 41.45 5.76 52.73 63.88
## 126 41.31 5.79 52.70 64.33
## 127 42.28 6.23 52.95 66.71
## 128 41.62 6.23 52.95 66.71
## 129 42.73 6.23 52.95 66.71
## 130 41.66 6.26 55.94 69.22
## 131 40.89 6.26 55.94 69.22
## 132 40.82 6.26 55.94 69.22
## 133 39.77 6.36 53.18 66.57
## 134 38.05 6.72 53.85 67.10
## 135 37.86 5.18 48.60 61.04
## 136 38.03 5.18 48.60 61.04
## 137 37.39 5.18 48.60 61.04
## 138 39.16 6.29 50.64 63.92
## 139 37.64 6.10 50.60 63.37
## 140 39.77 5.30 46.87 57.56
## 141 38.66 5.83 50.17 63.11
## 142 40.31 6.25 54.57 67.56
## 143 40.54 6.25 54.57 67.56
## 144 40.64 6.25 54.57 67.56
## 145 38.60 6.00 53.29 65.50
## 146 38.13 6.00 53.29 65.50
## 147 40.10 6.00 53.29 65.50
## 148 39.14 5.49 48.03 58.99
## 149 38.63 5.30 46.87 57.56
## 150 41.43 5.54 52.48 64.98
## 151 40.96 5.54 52.29 64.61
## 152 37.89 6.25 52.68 65.12
## 153 37.42 6.25 52.68 65.12
## 154 37.51 6.25 52.68 65.12
## 155 37.92 6.22 52.76 65.13
## 156 36.77 5.90 51.37 63.65
## 157 37.14 5.90 51.37 63.65
## 158 37.73 5.90 51.37 63.65
## 159 38.03 5.70 52.77 66.25
## 160 37.86 5.70 52.77 66.25
## 161 38.31 5.70 52.77 66.25
## 162 38.66 5.97 53.13 66.58
## 163 38.65 6.39 53.72 67.13
## 164 38.67 5.36 53.39 65.30
## 165 38.42 5.27 52.45 64.09
## 166 39.15 4.58 49.56 61.08
## 167 38.82 4.58 49.56 61.08
## 168 39.08 4.58 49.56 61.08
## 169 38.90 7.70 62.92 75.91
## 170 39.62 6.39 59.10 71.04
## 171 39.77 6.63 59.81 71.94
## 172 39.66 6.71 56.32 66.19
## 173 39.68 6.87 56.74 66.61
## 174 42.23 7.50 58.41 68.30
## 175 38.48 7.53 58.36 69.25
## 176 39.49 7.53 58.36 69.25
## BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06
## 1 12.74 19.51 43.73
## 2 14.65 19.36 53.14
## 3 14.65 19.36 53.14
## 4 14.65 19.36 53.14
## 5 14.02 17.91 54.66
## 6 15.17 21.79 51.23
## 7 13.82 17.71 54.45
## 8 15.70 19.42 54.72
## 9 15.70 19.42 54.72
## 10 15.70 19.42 54.72
## 11 13.36 18.67 52.83
## 12 13.36 18.67 52.83
## 13 13.36 18.67 52.83
## 14 17.59 20.67 52.83
## 15 11.80 20.54 54.57
## 16 13.80 20.72 52.49
## 17 15.38 20.86 50.84
## 18 15.67 21.50 52.02
## 19 15.72 21.80 52.30
## 20 15.72 21.80 52.30
## 21 15.72 21.80 52.30
## 22 13.43 17.72 53.27
## 23 12.22 18.46 51.45
## 24 11.47 18.93 50.31
## 25 18.37 23.76 56.64
## 26 11.83 22.52 48.95
## 27 12.22 20.16 47.23
## 28 12.53 20.39 48.94
## 29 14.28 21.67 58.42
## 30 11.81 21.12 59.38
## 31 12.41 21.14 57.89
## 32 13.27 20.96 55.95
## 33 13.18 20.77 56.39
## 34 12.51 20.32 58.17
## 35 13.23 24.85 54.89
## 36 11.70 18.04 50.50
## 37 13.02 21.17 52.58
## 38 13.02 21.17 52.58
## 39 13.02 21.17 52.58
## 40 12.26 21.32 50.79
## 41 12.40 22.14 52.24
## 42 11.25 18.15 49.89
## 43 11.25 18.15 49.89
## 44 11.25 18.15 49.89
## 45 12.12 20.65 53.17
## 46 12.42 19.05 52.31
## 47 12.42 19.05 52.31
## 48 12.42 19.05 52.31
## 49 15.11 22.66 56.22
## 50 13.45 18.44 50.16
## 51 13.45 18.44 50.16
## 52 13.45 18.44 50.16
## 53 14.46 21.02 53.78
## 54 13.22 15.62 50.85
## 55 13.22 15.62 50.85
## 56 13.22 15.62 50.85
## 57 12.72 15.91 48.64
## 58 12.72 15.91 48.64
## 59 12.72 15.91 48.64
## 60 12.25 16.58 50.88
## 61 11.95 18.00 50.50
## 62 11.15 17.25 48.12
## 63 11.15 17.25 48.12
## 64 11.15 17.25 48.12
## 65 12.02 17.40 46.52
## 66 12.02 17.40 46.52
## 67 12.02 17.40 46.52
## 68 11.97 18.40 48.01
## 69 11.83 16.95 46.62
## 70 11.83 16.95 46.62
## 71 11.83 16.95 46.62
## 72 12.24 18.28 46.04
## 73 12.11 18.77 46.80
## 74 12.69 16.92 51.25
## 75 12.69 16.92 51.25
## 76 12.69 16.92 51.25
## 77 12.27 18.06 49.92
## 78 12.70 18.65 47.67
## 79 14.25 17.08 50.06
## 80 14.25 17.08 50.06
## 81 14.25 17.08 50.06
## 82 23.09 19.96 53.87
## 83 13.98 16.81 48.46
## 84 13.98 16.81 48.46
## 85 13.98 16.81 48.46
## 86 12.65 19.23 44.66
## 87 12.65 19.23 44.66
## 88 12.65 19.23 44.66
## 89 11.98 17.22 47.12
## 90 11.98 17.22 47.12
## 91 11.98 17.22 47.12
## 92 12.37 15.46 46.72
## 93 14.20 20.16 49.06
## 94 14.05 19.16 49.21
## 95 11.99 18.73 47.41
## 96 11.73 18.80 47.98
## 97 11.73 18.80 47.98
## 98 11.73 18.80 47.98
## 99 10.41 20.40 44.30
## 100 10.41 20.40 44.30
## 101 10.41 20.40 44.30
## 102 11.22 19.69 44.57
## 103 9.99 16.90 44.74
## 104 10.49 18.04 44.73
## 105 10.49 18.04 44.73
## 106 10.49 18.04 44.73
## 107 10.40 18.26 47.57
## 108 10.40 18.26 47.57
## 109 10.40 18.26 47.57
## 110 10.48 17.72 44.43
## 111 12.29 17.09 50.62
## 112 12.29 17.09 50.62
## 113 12.29 17.09 50.62
## 114 11.71 16.35 49.10
## 115 11.17 15.44 47.33
## 116 11.87 16.59 49.97
## 117 12.34 17.38 51.77
## 118 10.50 19.17 45.06
## 119 10.50 19.17 45.06
## 120 10.50 19.17 45.06
## 121 10.11 19.09 44.45
## 122 11.79 19.43 43.24
## 123 11.45 19.11 46.06
## 124 11.23 19.06 47.29
## 125 10.59 20.49 47.29
## 126 10.70 20.09 47.21
## 127 12.75 16.31 45.84
## 128 12.75 16.31 45.84
## 129 12.75 16.31 45.84
## 130 12.07 18.08 48.92
## 131 12.07 18.08 48.92
## 132 12.07 18.08 48.92
## 133 12.07 16.22 46.51
## 134 12.50 16.15 46.87
## 135 9.38 16.30 43.78
## 136 9.38 16.30 43.78
## 137 9.38 16.30 43.78
## 138 11.46 13.24 43.50
## 139 10.90 19.05 44.18
## 140 9.93 18.07 40.60
## 141 10.32 17.24 44.31
## 142 12.10 17.66 47.80
## 143 12.10 17.66 47.80
## 144 12.10 17.66 47.80
## 145 11.71 18.80 46.34
## 146 11.71 18.80 46.34
## 147 11.71 18.80 46.34
## 148 10.24 18.30 41.50
## 149 9.93 18.07 40.60
## 150 10.30 18.24 45.86
## 151 10.32 18.52 45.76
## 152 11.64 18.11 45.42
## 153 11.64 18.11 45.42
## 154 11.64 18.11 45.42
## 155 11.50 18.55 45.48
## 156 10.76 19.90 45.07
## 157 10.76 19.90 45.07
## 158 10.76 19.90 45.07
## 159 10.50 15.18 47.07
## 160 10.50 15.18 47.07
## 161 10.50 15.18 47.07
## 162 11.00 16.55 46.77
## 163 11.75 18.61 46.32
## 164 12.05 18.57 46.91
## 165 10.84 18.10 46.02
## 166 9.84 18.68 43.53
## 167 9.84 18.68 43.53
## 168 9.84 18.68 43.53
## 169 13.49 16.10 55.29
## 170 11.52 21.82 53.53
## 171 11.89 20.76 53.86
## 172 12.35 20.02 50.26
## 173 12.55 20.18 50.80
## 174 13.33 20.81 52.96
## 175 14.35 20.57 51.31
## 176 14.35 20.57 51.31
## BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09
## 1 100.00 16.66 11.44
## 2 100.00 19.04 12.55
## 3 100.00 19.04 12.55
## 4 100.00 19.04 12.55
## 5 100.00 18.22 12.80
## 6 100.00 18.30 12.13
## 7 100.00 18.72 12.95
## 8 100.00 18.85 13.13
## 9 100.00 18.85 13.13
## 10 100.00 18.85 13.13
## 11 100.00 17.88 12.62
## 12 100.00 17.88 12.62
## 13 100.00 17.88 12.62
## 14 100.00 18.74 13.21
## 15 100.00 18.89 12.82
## 16 100.00 18.68 12.75
## 17 100.00 18.51 12.70
## 18 100.00 18.72 12.86
## 19 100.00 18.81 12.98
## 20 100.00 18.81 12.98
## 21 100.00 18.81 12.98
## 22 100.00 19.14 13.38
## 23 100.00 18.22 12.83
## 24 100.00 17.64 12.48
## 25 100.00 17.94 12.18
## 26 100.00 16.67 12.11
## 27 100.00 16.57 11.73
## 28 100.00 16.71 11.94
## 29 100.00 17.47 13.12
## 30 100.00 17.31 12.83
## 31 100.00 17.42 12.79
## 32 100.00 17.58 12.63
## 33 100.00 17.56 12.55
## 34 100.00 17.79 13.05
## 35 100.00 17.38 12.47
## 36 100.00 17.27 12.79
## 37 100.00 16.94 12.32
## 38 100.00 16.94 12.32
## 39 100.00 16.94 12.32
## 40 100.00 17.01 12.44
## 41 100.00 17.21 12.77
## 42 100.00 17.61 13.40
## 43 100.00 17.61 13.40
## 44 100.00 17.61 13.40
## 45 100.00 17.59 13.31
## 46 100.00 17.64 13.28
## 47 100.00 17.64 13.28
## 48 100.00 17.64 13.28
## 49 100.00 18.82 12.76
## 50 100.00 17.55 12.83
## 51 100.00 17.55 12.83
## 52 100.00 17.55 12.83
## 53 100.00 18.33 12.82
## 54 100.00 17.74 13.16
## 55 100.00 17.74 13.16
## 56 100.00 17.74 13.16
## 57 100.00 17.87 13.31
## 58 100.00 17.87 13.31
## 59 100.00 17.87 13.31
## 60 100.00 18.18 13.60
## 61 100.00 17.92 13.23
## 62 100.83 17.97 13.12
## 63 100.83 17.97 13.12
## 64 100.83 17.97 13.12
## 65 100.00 17.38 12.48
## 66 100.00 17.38 12.48
## 67 100.00 17.38 12.48
## 68 100.00 17.81 12.75
## 69 100.00 17.76 13.31
## 70 100.00 17.76 13.31
## 71 100.00 17.76 13.31
## 72 100.00 17.67 12.47
## 73 100.00 17.58 12.69
## 74 100.00 17.92 13.50
## 75 100.00 17.92 13.50
## 76 100.00 17.92 13.50
## 77 100.00 17.76 13.29
## 78 100.00 16.82 12.11
## 79 100.00 18.02 13.51
## 80 100.00 18.02 13.51
## 81 100.00 18.02 13.51
## 82 100.00 18.84 14.08
## 83 100.00 17.91 13.34
## 84 100.00 17.91 13.34
## 85 100.00 17.91 13.34
## 86 100.00 17.16 12.71
## 87 100.00 17.16 12.71
## 88 100.00 17.16 12.71
## 89 100.00 17.74 13.47
## 90 100.00 17.74 13.47
## 91 100.00 17.74 13.47
## 92 100.00 17.41 13.28
## 93 100.00 18.01 13.34
## 94 100.00 18.02 13.43
## 95 100.00 17.04 12.58
## 96 100.00 17.35 12.75
## 97 100.00 17.35 12.75
## 98 100.00 17.35 12.75
## 99 100.00 16.96 12.68
## 100 100.00 16.96 12.68
## 101 100.00 16.96 12.68
## 102 100.00 17.09 12.57
## 103 100.00 16.79 13.04
## 104 100.00 17.18 12.95
## 105 100.00 17.18 12.95
## 106 100.00 17.18 12.95
## 107 100.00 17.24 12.99
## 108 100.00 17.24 12.99
## 109 100.00 17.24 12.99
## 110 100.00 17.13 13.00
## 111 100.00 17.44 13.10
## 112 100.00 17.44 13.10
## 113 100.00 17.44 13.10
## 114 100.00 17.15 12.99
## 115 100.00 16.76 12.81
## 116 100.00 16.78 12.63
## 117 100.00 16.80 12.51
## 118 100.00 16.83 12.53
## 119 100.00 16.83 12.53
## 120 100.00 16.83 12.53
## 121 100.00 16.54 12.21
## 122 100.00 17.54 12.61
## 123 100.00 17.23 12.84
## 124 100.00 17.03 12.96
## 125 100.00 17.70 12.48
## 126 100.00 17.54 12.55
## 127 100.00 16.70 12.75
## 128 100.00 16.70 12.75
## 129 100.00 16.70 12.75
## 130 100.00 17.56 13.14
## 131 100.00 17.56 13.14
## 132 100.00 17.56 13.14
## 133 100.00 17.19 12.97
## 134 100.00 17.61 13.15
## 135 100.00 15.88 12.16
## 136 100.00 15.88 12.16
## 137 100.00 15.88 12.16
## 138 100.00 16.58 12.88
## 139 100.00 17.37 13.10
## 140 100.00 16.34 12.12
## 141 100.00 16.86 12.88
## 142 100.00 17.32 12.89
## 143 100.00 17.32 12.89
## 144 100.00 17.32 12.89
## 145 100.00 17.32 12.75
## 146 100.00 17.32 12.75
## 147 100.00 17.32 12.75
## 148 100.00 16.61 12.34
## 149 100.00 16.34 12.12
## 150 100.00 17.07 12.90
## 151 100.00 17.05 12.82
## 152 100.00 17.51 13.01
## 153 100.00 17.51 13.01
## 154 100.00 17.51 13.01
## 155 100.00 17.57 13.08
## 156 100.00 17.06 12.78
## 157 100.00 17.06 12.78
## 158 100.00 17.06 12.78
## 159 100.00 16.67 12.84
## 160 100.00 16.67 12.84
## 161 100.00 16.67 12.84
## 162 100.00 16.97 13.00
## 163 100.00 17.44 13.25
## 164 100.00 16.42 12.32
## 165 100.00 16.35 12.22
## 166 100.00 16.16 12.14
## 167 100.00 16.16 12.14
## 168 100.00 16.16 12.14
## 169 100.00 18.28 13.83
## 170 100.00 17.93 12.92
## 171 100.00 17.99 13.09
## 172 100.00 17.54 12.50
## 173 100.00 17.48 12.41
## 174 100.00 17.23 12.04
## 175 100.00 17.87 12.77
## 176 100.00 17.87 12.77
## BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12
## 1 3.46 138.09 18.83
## 2 3.46 153.67 21.05
## 3 3.46 153.67 21.05
## 4 3.46 153.67 21.05
## 5 3.05 147.61 21.05
## 6 3.78 151.88 20.76
## 7 3.04 147.11 20.75
## 8 3.85 154.20 21.45
## 9 3.85 154.20 21.45
## 10 3.85 154.20 21.45
## 11 2.90 143.28 20.21
## 12 2.90 143.28 20.21
## 13 2.90 143.28 20.21
## 14 4.94 158.42 21.77
## 15 2.30 152.83 22.18
## 16 3.25 152.82 21.35
## 17 4.01 152.82 20.70
## 18 4.16 156.51 21.47
## 19 4.24 158.36 21.82
## 20 4.24 158.36 21.82
## 21 4.24 158.36 21.82
## 22 3.02 153.10 21.90
## 23 2.69 148.49 21.23
## 24 2.49 145.61 20.81
## 25 4.15 151.54 20.27
## 26 2.75 140.84 19.07
## 27 3.06 139.52 18.62
## 28 3.07 142.45 19.12
## 29 3.10 158.66 21.88
## 30 2.14 154.56 22.18
## 31 2.35 153.00 21.58
## 32 2.61 151.00 20.80
## 33 2.53 151.48 20.99
## 34 2.50 157.45 22.21
## 35 2.76 149.46 20.42
## 36 2.41 145.62 20.18
## 37 2.46 144.80 20.03
## 38 2.46 144.80 20.03
## 39 2.46 144.80 20.03
## 40 2.46 143.94 19.78
## 41 2.58 148.28 20.33
## 42 2.57 151.50 20.88
## 43 2.57 151.50 20.88
## 44 2.57 151.50 20.88
## 45 2.61 154.06 21.31
## 46 2.75 151.21 20.75
## 47 2.75 151.21 20.75
## 48 2.75 151.21 20.75
## 49 3.18 157.34 21.33
## 50 3.09 149.60 20.25
## 51 3.09 149.60 20.25
## 52 3.09 149.60 20.25
## 53 3.18 154.71 20.95
## 54 2.91 148.45 20.44
## 55 2.91 148.45 20.44
## 56 2.91 148.45 20.44
## 57 2.98 146.08 20.33
## 58 2.98 146.08 20.33
## 59 2.98 146.08 20.33
## 60 2.75 151.23 21.30
## 61 2.63 151.67 21.29
## 62 2.48 149.03 20.88
## 63 2.48 149.03 20.88
## 64 2.48 149.03 20.88
## 65 2.75 144.50 19.82
## 66 2.75 144.50 19.82
## 67 2.75 144.50 19.82
## 68 2.76 147.17 20.41
## 69 2.87 143.65 20.35
## 70 2.87 143.65 20.35
## 71 2.87 143.65 20.35
## 72 2.85 144.40 19.85
## 73 2.79 145.90 19.96
## 74 2.62 151.25 20.89
## 75 2.62 151.25 20.89
## 76 2.62 151.25 20.89
## 77 2.61 150.06 20.65
## 78 2.58 142.66 19.64
## 79 3.37 148.92 20.33
## 80 3.37 148.92 20.33
## 81 3.37 148.92 20.33
## 82 6.87 158.73 20.57
## 83 3.37 146.67 19.95
## 84 3.37 146.67 19.95
## 85 3.37 146.67 19.95
## 86 3.15 142.11 19.13
## 87 3.15 142.11 19.13
## 88 3.15 142.11 19.13
## 89 2.86 148.00 20.04
## 90 2.86 148.00 20.04
## 91 2.86 148.00 20.04
## 92 2.96 143.47 19.85
## 93 3.62 147.63 19.77
## 94 3.52 148.07 19.87
## 95 2.45 146.20 19.83
## 96 2.51 147.95 20.25
## 97 2.51 147.95 20.25
## 98 2.51 147.95 20.25
## 99 2.34 143.33 19.63
## 100 2.34 143.33 19.63
## 101 2.34 143.33 19.63
## 102 2.55 143.07 19.47
## 103 2.33 142.66 19.67
## 104 2.46 143.84 19.85
## 105 2.46 143.84 19.85
## 106 2.46 143.84 19.85
## 107 2.16 146.64 20.57
## 108 2.16 146.64 20.57
## 109 2.16 146.64 20.57
## 110 2.52 143.19 19.69
## 111 2.58 147.66 20.25
## 112 2.58 147.66 20.25
## 113 2.58 147.66 20.25
## 114 2.44 146.29 20.16
## 115 2.30 144.34 19.95
## 116 2.31 144.75 19.94
## 117 2.32 145.03 19.93
## 118 2.27 142.90 19.64
## 119 2.27 142.90 19.64
## 120 2.27 142.90 19.64
## 121 2.11 141.49 19.46
## 122 3.08 142.33 19.17
## 123 2.67 145.08 19.74
## 124 2.49 147.33 20.04
## 125 2.23 150.39 20.62
## 126 2.27 149.52 20.48
## 127 2.98 140.93 19.10
## 128 2.98 140.93 19.10
## 129 2.98 140.93 19.10
## 130 2.60 148.53 20.45
## 131 2.60 148.53 20.45
## 132 2.60 148.53 20.45
## 133 2.80 144.38 19.51
## 134 3.02 145.80 19.56
## 135 1.87 138.14 19.20
## 136 1.87 138.14 19.20
## 137 1.87 138.14 19.20
## 138 2.90 136.35 18.35
## 139 2.67 146.66 19.73
## 140 2.43 135.81 18.57
## 141 2.38 143.75 19.59
## 142 2.73 145.57 19.76
## 143 2.73 145.57 19.76
## 144 2.73 145.57 19.76
## 145 2.63 145.37 19.75
## 146 2.63 145.37 19.75
## 147 2.63 145.37 19.75
## 148 2.55 137.49 18.77
## 149 2.43 135.81 18.57
## 150 2.18 145.88 20.08
## 151 2.19 145.59 20.02
## 152 2.88 145.07 19.56
## 153 2.88 145.07 19.56
## 154 2.88 145.07 19.56
## 155 2.88 145.10 19.64
## 156 2.46 144.98 19.73
## 157 2.46 144.98 19.73
## 158 2.46 144.98 19.73
## 159 2.17 144.39 19.93
## 160 2.17 144.39 19.93
## 161 2.17 144.39 19.93
## 162 2.40 145.03 19.88
## 163 2.75 145.96 19.80
## 164 2.31 144.29 19.71
## 165 1.77 143.59 19.66
## 166 1.99 139.64 18.80
## 167 1.99 139.64 18.80
## 168 1.99 139.64 18.80
## 169 3.20 149.91 21.23
## 170 2.38 155.77 20.76
## 171 2.53 154.68 20.85
## 172 2.82 143.45 20.32
## 173 2.82 143.10 20.24
## 174 2.83 141.72 19.92
## 175 3.55 145.56 20.04
## 176 3.55 145.56 20.04
## ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03
## 1 NA NA NA
## 2 0.0 0.0 NA
## 3 0.0 0.0 NA
## 4 0.0 0.0 NA
## 5 10.7 0.0 NA
## 6 12.0 0.0 NA
## 7 11.5 0.0 1.56
## 8 12.0 0.0 1.55
## 9 12.0 0.0 1.56
## 10 12.0 0.0 1.55
## 11 10.3 0.0 1.55
## 12 10.3 0.0 1.55
## 13 10.3 0.0 1.55
## 14 11.1 0.0 1.59
## 15 11.3 0.0 NA
## 16 11.1 0.0 NA
## 17 11.1 0.0 NA
## 18 12.4 0.0 NA
## 19 12.7 0.0 NA
## 20 12.7 0.0 NA
## 21 12.7 0.0 1.56
## 22 10.9 0.0 NA
## 23 11.1 0.0 NA
## 24 11.3 0.0 NA
## 25 9.0 0.0 1.54
## 26 11.6 0.0 1.52
## 27 9.2 0.0 1.53
## 28 9.2 0.0 1.54
## 29 9.2 0.0 1.52
## 30 10.4 0.0 1.52
## 31 10.3 0.0 1.54
## 32 11.2 0.0 1.53
## 33 11.6 0.0 1.52
## 34 10.6 0.0 1.52
## 35 11.6 0.0 1.53
## 36 12.5 0.0 1.53
## 37 11.9 19.7 1.53
## 38 11.9 19.9 1.52
## 39 11.9 19.3 1.54
## 40 11.0 19.5 1.52
## 41 11.3 19.3 1.52
## 42 10.8 22.5 1.48
## 43 10.8 20.5 1.53
## 44 10.8 21.5 1.55
## 45 11.4 20.5 1.56
## 46 12.2 20.5 1.50
## 47 12.2 20.5 1.50
## 48 12.2 20.0 1.56
## 49 11.7 18.0 1.52
## 50 10.4 19.0 1.52
## 51 10.4 18.0 1.53
## 52 10.4 19.5 1.54
## 53 11.1 19.5 1.54
## 54 9.7 19.5 1.54
## 55 9.7 19.5 1.54
## 56 9.7 19.5 1.52
## 57 10.7 19.5 1.50
## 58 10.7 19.5 1.52
## 59 10.7 18.0 1.58
## 60 9.3 20.0 1.57
## 61 8.7 19.0 1.60
## 62 9.1 20.0 1.51
## 63 9.1 19.5 1.51
## 64 9.1 19.5 1.49
## 65 11.0 20.0 1.50
## 66 11.0 19.5 1.51
## 67 11.0 19.5 1.50
## 68 12.0 19.5 1.48
## 69 10.0 20.0 1.49
## 70 10.2 19.0 1.48
## 71 10.2 19.0 1.48
## 72 9.5 19.0 1.47
## 73 10.9 19.5 1.51
## 74 11.3 21.5 1.55
## 75 11.3 22.2 1.54
## 76 11.3 22.0 1.54
## 77 11.5 22.5 1.55
## 78 11.4 21.5 1.55
## 79 11.0 21.5 1.55
## 80 11.0 22.0 1.52
## 81 11.0 22.0 1.53
## 82 12.7 22.0 1.55
## 83 11.2 20.5 1.55
## 84 11.2 21.0 1.55
## 85 11.2 22.0 1.54
## 86 11.6 21.0 1.55
## 87 11.6 21.5 1.55
## 88 11.6 21.5 1.55
## 89 10.8 21.5 1.54
## 90 10.8 21.5 1.55
## 91 10.8 21.7 1.55
## 92 12.4 22.0 1.54
## 93 9.9 21.5 1.54
## 94 10.0 21.5 1.55
## 95 9.1 21.5 1.53
## 96 10.6 22.0 1.53
## 97 10.6 22.0 1.54
## 98 10.6 20.9 1.55
## 99 11.5 22.0 1.54
## 100 11.5 21.0 1.55
## 101 11.5 21.5 1.53
## 102 11.8 21.9 1.54
## 103 12.3 21.7 1.55
## 104 11.8 21.6 1.55
## 105 11.8 21.8 1.55
## 106 11.8 20.8 1.55
## 107 9.8 22.0 1.54
## 108 9.8 21.9 1.50
## 109 9.8 22.4 1.48
## 110 11.7 22.0 1.52
## 111 11.4 20.5 1.57
## 112 11.4 22.2 1.54
## 113 11.4 22.3 1.53
## 114 11.7 22.0 1.51
## 115 12.0 21.2 1.55
## 116 12.3 21.1 1.54
## 117 12.5 21.0 1.55
## 118 11.4 21.0 1.55
## 119 11.4 20.9 1.54
## 120 11.4 21.1 1.55
## 121 12.0 21.2 1.55
## 122 12.3 21.5 1.55
## 123 11.3 21.2 1.55
## 124 11.2 20.8 1.55
## 125 12.1 20.9 1.54
## 126 11.9 21.2 1.55
## 127 11.4 21.3 1.54
## 128 11.4 21.3 1.55
## 129 11.4 21.4 1.54
## 130 12.2 21.5 1.55
## 131 12.2 21.4 1.55
## 132 12.2 21.5 1.54
## 133 10.8 21.2 1.55
## 134 10.9 NA 1.55
## 135 11.3 21.4 1.54
## 136 11.3 21.3 1.55
## 137 11.3 21.3 1.55
## 138 12.2 21.6 1.55
## 139 10.0 NA 1.55
## 140 13.1 21.3 1.55
## 141 10.2 21.2 1.54
## 142 12.4 21.2 1.55
## 143 12.4 21.4 1.54
## 144 12.4 21.4 1.55
## 145 12.7 21.4 1.55
## 146 12.7 21.6 1.54
## 147 12.7 21.6 1.55
## 148 13.0 21.4 1.54
## 149 13.3 21.4 1.54
## 150 13.4 21.4 1.54
## 151 13.3 21.1 1.54
## 152 12.7 21.5 1.60
## 153 12.7 21.7 1.59
## 154 12.7 21.3 1.60
## 155 12.7 21.2 1.60
## 156 12.4 21.3 1.54
## 157 12.4 21.0 1.55
## 158 12.4 21.2 1.55
## 159 12.1 21.4 1.55
## 160 12.1 21.3 1.55
## 161 12.1 21.5 1.54
## 162 12.1 21.1 1.54
## 163 12.4 21.0 1.55
## 164 11.5 21.2 1.55
## 165 11.4 21.2 1.55
## 166 11.6 21.2 1.55
## 167 11.6 21.2 1.55
## 168 11.6 20.0 1.55
## 169 11.3 20.8 1.55
## 170 12.5 19.9 1.55
## 171 14.1 20.0 1.54
## 172 12.8 21.5 1.54
## 173 12.8 21.5 1.56
## 174 13.0 20.4 1.55
## 175 14.1 21.6 1.55
## 176 14.1 20.8 1.55
## ManufacturingProcess04 ManufacturingProcess05 ManufacturingProcess06
## 1 NA NA NA
## 2 917 1032.2 210.0
## 3 912 1003.6 207.1
## 4 911 1014.6 213.3
## 5 918 1027.5 205.7
## 6 924 1016.8 208.9
## 7 933 988.9 210.0
## 8 929 1010.9 211.7
## 9 928 1003.5 208.7
## 10 938 1003.8 209.8
## 11 932 983.1 209.4
## 12 930 992.0 209.4
## 13 934 1004.1 207.8
## 14 934 1036.8 209.1
## 15 930 1120.7 207.8
## 16 928 1073.6 207.1
## 17 928 1027.5 205.9
## 18 930 1021.4 208.4
## 19 929 1092.2 207.5
## 20 929 1175.3 204.1
## 21 925 1102.8 206.6
## 22 936 1024.4 218.7
## 23 937 997.7 209.6
## 24 940 1031.3 215.1
## 25 934 1007.3 209.4
## 26 930 950.7 203.6
## 27 926 955.8 203.0
## 28 922 975.8 203.6
## 29 924 986.9 206.4
## 30 921 1001.1 205.5
## 31 928 1006.7 206.2
## 32 926 1024.0 208.2
## 33 923 1041.2 207.3
## 34 928 999.5 209.4
## 35 925 1010.3 209.1
## 36 930 1002.4 207.5
## 37 926 1019.6 206.4
## 38 924 1008.6 208.7
## 39 926 1014.3 208.7
## 40 924 1027.0 206.6
## 41 925 1015.0 205.9
## 42 936 954.7 211.2
## 43 923 954.0 210.0
## 44 930 969.3 208.7
## 45 928 980.3 208.2
## 46 926 986.4 208.7
## 47 925 977.8 227.4
## 48 927 1006.4 210.7
## 49 921 1002.4 209.8
## 50 923 971.2 207.8
## 51 918 977.6 204.8
## 52 926 989.2 206.4
## 53 929 989.6 205.5
## 54 923 1003.8 206.8
## 55 925 984.2 205.2
## 56 924 992.5 207.3
## 57 924 987.0 206.2
## 58 926 991.5 211.4
## 59 920 1003.2 207.8
## 60 928 983.2 208.0
## 61 921 980.8 206.2
## 62 925 982.3 205.9
## 63 923 983.4 206.2
## 64 928 1004.5 206.8
## 65 927 1016.1 210.3
## 66 922 999.7 213.3
## 67 923 1013.9 209.6
## 68 923 994.0 206.8
## 69 929 960.0 210.7
## 70 921 961.3 205.0
## 71 921 969.7 207.8
## 72 923 989.7 205.7
## 73 923 996.4 206.2
## 74 935 976.4 204.8
## 75 933 971.6 208.0
## 76 933 974.0 205.9
## 77 932 978.0 209.4
## 78 932 980.2 205.7
## 79 937 993.4 205.5
## 80 931 990.5 207.1
## 81 935 982.9 206.6
## 82 934 1000.7 205.5
## 83 934 1000.8 205.2
## 84 939 1171.2 206.4
## 85 936 979.2 208.7
## 86 932 994.5 207.8
## 87 937 989.2 205.2
## 88 939 983.7 206.4
## 89 937 960.4 204.8
## 90 935 954.8 NA
## 91 938 975.8 205.2
## 92 941 1009.1 206.4
## 93 933 992.6 205.9
## 94 937 1003.7 205.0
## 95 931 1006.1 206.8
## 96 934 1001.0 204.8
## 97 937 994.9 205.0
## 98 933 1001.3 205.2
## 99 934 1004.3 205.0
## 100 934 1008.1 204.6
## 101 937 1004.8 206.6
## 102 937 992.8 204.6
## 103 936 974.0 206.4
## 104 937 987.7 206.6
## 105 936 987.9 205.5
## 106 933 986.6 205.5
## 107 932 992.3 208.4
## 108 934 987.9 208.9
## 109 937 994.3 211.4
## 110 940 980.3 205.2
## 111 929 976.0 204.8
## 112 937 994.1 208.9
## 113 936 983.2 213.7
## 114 935 981.6 204.3
## 115 942 992.0 204.1
## 116 934 980.0 206.4
## 117 938 997.8 205.7
## 118 934 991.9 205.0
## 119 934 986.1 204.1
## 120 935 923.0 204.8
## 121 935 1003.2 206.8
## 122 939 995.2 205.7
## 123 936 991.8 208.2
## 124 935 994.7 207.3
## 125 934 996.9 207.3
## 126 935 996.5 209.1
## 127 939 987.3 211.4
## 128 939 981.9 205.7
## 129 941 990.0 207.1
## 130 939 1004.4 206.4
## 131 936 990.8 208.2
## 132 939 999.2 206.4
## 133 940 998.9 208.9
## 134 934 1000.1 208.7
## 135 936 1001.2 206.2
## 136 936 1011.9 207.5
## 137 936 998.6 206.2
## 138 940 1002.1 207.5
## 139 935 986.1 205.2
## 140 936 983.6 207.5
## 141 934 989.8 206.8
## 142 935 1008.1 206.6
## 143 934 1000.6 207.3
## 144 939 1011.6 206.8
## 145 937 1005.1 208.9
## 146 938 1014.4 206.4
## 147 941 1012.5 206.6
## 148 939 998.5 209.8
## 149 940 1012.2 209.4
## 150 939 1007.6 208.9
## 151 936 1022.3 206.4
## 152 946 1005.0 210.5
## 153 939 998.0 205.5
## 154 934 997.1 206.2
## 155 936 1006.1 207.3
## 156 935 990.5 205.7
## 157 934 1002.4 206.2
## 158 940 984.3 204.3
## 159 938 1005.3 207.1
## 160 936 1003.8 206.2
## 161 934 1009.5 205.7
## 162 938 1015.1 207.5
## 163 936 1020.8 206.6
## 164 939 1014.5 206.6
## 165 933 1029.0 205.9
## 166 933 1008.0 205.5
## 167 934 999.9 208.2
## 168 928 1003.2 206.6
## 169 934 1014.6 208.7
## 170 933 1005.1 205.2
## 171 936 1029.7 206.8
## 172 935 1027.0 206.2
## 173 933 1032.0 206.6
## 174 930 1040.0 208.7
## 175 935 1044.8 208.0
## 176 932 1053.8 207.5
## ManufacturingProcess07 ManufacturingProcess08 ManufacturingProcess09
## 1 NA NA 43.00
## 2 177 178 46.57
## 3 178 178 45.07
## 4 177 177 44.92
## 5 178 178 44.96
## 6 178 178 45.32
## 7 177 178 49.36
## 8 178 178 48.68
## 9 177 177 47.20
## 10 177 177 47.11
## 11 177 177 46.24
## 12 178 178 46.10
## 13 177 177 47.53
## 14 178 178 45.28
## 15 177 177 46.44
## 16 177 177 45.40
## 17 177 177 45.54
## 18 177 177 45.73
## 19 178 178 44.46
## 20 177 177 45.02
## 21 178 178 45.22
## 22 178 178 47.04
## 23 177 177 46.43
## 24 177 177 47.09
## 25 178 178 47.28
## 26 178 178 38.89
## 27 177 178 39.02
## 28 178 178 40.46
## 29 177 177 42.67
## 30 178 178 44.95
## 31 177 177 46.27
## 32 178 178 47.08
## 33 177 177 48.77
## 34 178 178 45.78
## 35 177 177 44.77
## 36 177 177 46.65
## 37 178 178 46.17
## 38 177 177 46.38
## 39 178 178 45.92
## 40 177 177 46.77
## 41 178 178 46.69
## 42 177 177 45.95
## 43 178 177 46.66
## 44 177 178 47.33
## 45 178 178 46.78
## 46 177 177 46.48
## 47 178 178 46.03
## 48 177 177 48.11
## 49 177 178 47.45
## 50 178 178 44.65
## 51 177 177 46.47
## 52 178 178 47.33
## 53 177 177 46.34
## 54 178 177 48.84
## 55 177 178 46.32
## 56 178 178 47.03
## 57 177 177 45.66
## 58 178 178 47.09
## 59 177 177 49.04
## 60 177 178 46.30
## 61 178 178 46.37
## 62 177 177 46.32
## 63 178 178 46.02
## 64 177 177 48.17
## 65 178 177 47.44
## 66 177 178 47.30
## 67 178 178 48.11
## 68 178 178 46.00
## 69 177 177 45.05
## 70 178 177 43.83
## 71 177 178 43.86
## 72 177 177 47.40
## 73 178 178 47.52
## 74 177 177 45.88
## 75 178 177 45.52
## 76 177 178 45.11
## 77 178 178 45.57
## 78 177 177 44.92
## 79 177 177 46.11
## 80 178 177 46.12
## 81 177 178 44.55
## 82 178 178 45.10
## 83 178 178 44.99
## 84 177 178 45.64
## 85 178 178 44.62
## 86 177 177 45.45
## 87 178 178 45.52
## 88 177 177 46.10
## 89 177 178 43.52
## 90 178 178 43.52
## 91 177 177 44.11
## 92 178 178 46.33
## 93 177 177 45.69
## 94 178 178 44.22
## 95 178 177 45.49
## 96 177 177 44.09
## 97 178 178 44.56
## 98 177 177 45.14
## 99 177 178 43.73
## 100 178 177 44.35
## 101 177 177 44.13
## 102 178 178 43.49
## 103 177 177 42.66
## 104 178 178 43.58
## 105 177 177 44.70
## 106 178 178 44.23
## 107 177 177 45.61
## 108 178 178 45.99
## 109 177 177 46.01
## 110 178 178 43.75
## 111 178 177 43.75
## 112 177 177 44.64
## 113 178 178 43.84
## 114 177 177 43.37
## 115 177 177 44.94
## 116 178 178 43.12
## 117 177 177 45.23
## 118 178 177 44.10
## 119 177 178 43.92
## 120 178 178 43.26
## 121 177 177 45.63
## 122 178 178 46.51
## 123 177 178 45.85
## 124 178 178 46.95
## 125 177 178 47.21
## 126 178 178 46.23
## 127 177 178 45.71
## 128 178 178 44.99
## 129 177 178 45.62
## 130 178 178 46.67
## 131 177 177 45.23
## 132 178 178 45.73
## 133 178 178 46.36
## 134 177 178 47.06
## 135 178 177 46.95
## 136 177 177 47.47
## 137 178 178 46.06
## 138 178 178 46.58
## 139 177 178 46.06
## 140 178 178 45.30
## 141 177 178 46.53
## 142 178 178 46.12
## 143 177 178 46.39
## 144 178 178 46.50
## 145 177 178 44.78
## 146 178 178 44.52
## 147 177 177 46.46
## 148 177 178 45.23
## 149 178 178 46.74
## 150 177 177 45.54
## 151 178 178 46.26
## 152 178 178 45.76
## 153 177 177 44.90
## 154 178 178 45.30
## 155 177 177 45.28
## 156 177 177 44.38
## 157 178 178 44.25
## 158 177 177 44.38
## 159 178 178 44.86
## 160 177 177 44.09
## 161 178 178 44.62
## 162 178 178 45.51
## 163 177 177 46.22
## 164 177 177 45.87
## 165 178 177 47.70
## 166 177 178 45.51
## 167 178 178 45.13
## 168 177 177 45.73
## 169 177 177 46.04
## 170 178 177 45.31
## 171 177 178 44.77
## 172 178 177 46.78
## 173 177 178 46.51
## 174 178 177 48.05
## 175 177 177 48.11
## 176 178 178 48.13
## ManufacturingProcess10 ManufacturingProcess11 ManufacturingProcess12
## 1 NA NA NA
## 2 NA NA 0
## 3 NA NA 0
## 4 NA NA 0
## 5 NA NA 0
## 6 NA NA 0
## 7 11.6 11.5 0
## 8 10.2 11.3 0
## 9 9.7 11.1 0
## 10 10.1 10.2 0
## 11 9.0 9.5 0
## 12 8.8 9.7 0
## 13 9.3 10.4 0
## 14 9.6 9.8 0
## 15 9.4 10.2 0
## 16 9.6 10.2 0
## 17 9.0 10.0 0
## 18 9.5 10.6 0
## 19 8.9 9.8 0
## 20 8.9 9.9 0
## 21 9.0 10.0 0
## 22 NA NA 0
## 23 NA NA 0
## 24 NA NA 0
## 25 11.1 9.0 0
## 26 9.2 7.6 0
## 27 8.4 7.5 0
## 28 7.8 7.5 0
## 29 7.5 7.7 0
## 30 9.4 9.0 0
## 31 9.0 9.1 0
## 32 10.7 9.5 0
## 33 10.1 10.5 0
## 34 9.8 9.7 0
## 35 9.4 9.3 0
## 36 9.7 10.0 4549
## 37 9.4 10.2 4549
## 38 9.7 10.0 4549
## 39 9.5 10.0 4549
## 40 10.2 9.8 4549
## 41 9.8 10.0 4549
## 42 11.1 10.5 4549
## 43 8.1 8.9 4549
## 44 9.3 9.3 4549
## 45 9.0 8.8 4549
## 46 8.5 9.2 4549
## 47 9.4 9.1 4549
## 48 8.9 9.9 4549
## 49 9.5 9.6 4549
## 50 8.9 9.1 4549
## 51 8.9 9.4 4549
## 52 8.7 11.0 4549
## 53 9.0 9.5 4549
## 54 8.7 10.8 4549
## 55 8.4 8.6 4549
## 56 8.2 9.4 4549
## 57 10.3 9.4 4549
## 58 10.3 9.8 4549
## 59 11.1 10.2 4549
## 60 9.4 9.1 4549
## 61 9.6 9.1 4549
## 62 10.4 9.0 4549
## 63 10.2 8.7 4549
## 64 9.6 10.2 4549
## 65 11.2 9.9 4549
## 66 10.9 10.1 4549
## 67 11.0 10.4 4549
## 68 9.7 9.6 4549
## 69 9.4 9.0 0
## 70 8.9 8.4 0
## 71 8.4 8.3 0
## 72 9.7 9.5 0
## 73 10.2 9.9 0
## 74 8.5 9.1 0
## 75 8.2 8.7 0
## 76 8.7 8.6 0
## 77 9.8 9.3 0
## 78 8.7 9.1 0
## 79 9.3 9.4 0
## 80 8.4 9.3 0
## 81 8.2 8.4 0
## 82 8.6 8.8 0
## 83 9.1 8.5 0
## 84 8.9 9.1 0
## 85 8.6 8.4 0
## 86 9.4 9.4 0
## 87 9.3 9.5 0
## 88 9.4 9.6 0
## 89 8.1 8.3 0
## 90 8.4 8.3 0
## 91 8.4 8.3 0
## 92 8.7 9.2 0
## 93 8.4 9.1 0
## 94 8.6 8.9 0
## 95 9.1 8.9 0
## 96 8.8 8.7 0
## 97 9.3 9.0 0
## 98 9.1 NA 0
## 99 11.4 8.7 0
## 100 8.7 9.2 0
## 101 8.9 9.3 0
## 102 8.8 9.0 0
## 103 8.9 8.7 0
## 104 8.7 9.1 0
## 105 9.3 9.1 0
## 106 8.7 9.0 0
## 107 9.0 8.9 0
## 108 9.4 9.3 0
## 109 9.0 8.9 0
## 110 9.6 9.4 0
## 111 9.5 7.9 0
## 112 7.8 8.7 0
## 113 8.1 8.7 0
## 114 7.8 8.1 0
## 115 9.1 9.0 0
## 116 8.3 8.3 0
## 117 8.5 9.1 0
## 118 8.8 9.2 0
## 119 9.0 9.1 0
## 120 8.7 8.6 0
## 121 9.0 9.6 0
## 122 9.8 10.1 0
## 123 8.8 9.7 0
## 124 8.9 9.8 0
## 125 10.0 10.2 0
## 126 9.3 10.0 0
## 127 8.1 9.1 0
## 128 8.3 8.8 0
## 129 8.2 9.4 0
## 130 9.1 10.1 0
## 131 8.9 8.2 0
## 132 7.9 8.8 0
## 133 8.2 9.2 0
## 134 8.7 9.4 0
## 135 9.3 9.6 0
## 136 8.5 10.0 0
## 137 9.3 9.3 0
## 138 9.7 9.3 0
## 139 9.5 9.5 0
## 140 10.4 9.8 0
## 141 8.6 9.3 0
## 142 8.7 9.5 0
## 143 8.9 9.6 0
## 144 9.0 10.0 0
## 145 9.3 9.7 0
## 146 9.3 9.4 0
## 147 9.1 9.6 0
## 148 9.9 10.1 0
## 149 9.4 10.6 0
## 150 9.0 9.4 0
## 151 9.3 10.1 0
## 152 8.3 9.8 0
## 153 9.5 9.5 0
## 154 9.5 9.4 0
## 155 8.7 9.5 0
## 156 9.1 9.1 0
## 157 9.1 9.3 0
## 158 9.0 9.7 0
## 159 8.5 8.8 0
## 160 7.7 8.1 0
## 161 7.8 8.6 0
## 162 8.8 9.2 0
## 163 8.8 9.2 0
## 164 9.3 9.9 0
## 165 10.5 10.3 0
## 166 9.3 10.1 0
## 167 9.4 9.6 0
## 168 9.7 10.0 0
## 169 8.2 8.2 0
## 170 8.8 9.1 0
## 171 9.0 9.4 0
## 172 9.6 9.6 0
## 173 9.5 9.9 0
## 174 10.1 10.4 0
## 175 10.2 10.3 0
## 176 9.9 10.3 0
## ManufacturingProcess13 ManufacturingProcess14 ManufacturingProcess15
## 1 35.5 4898 6108
## 2 34.0 4869 6095
## 3 34.8 4878 6087
## 4 34.8 4897 6102
## 5 34.6 4992 6233
## 6 34.0 4985 6222
## 7 32.4 4745 5999
## 8 33.6 4854 6105
## 9 33.9 4893 6144
## 10 34.3 4846 6077
## 11 35.8 4944 6156
## 12 35.6 4959 6178
## 13 35.1 4917 6158
## 14 34.9 4882 6108
## 15 35.3 4918 6156
## 16 35.4 4805 6124
## 17 35.8 4942 6177
## 18 35.5 4899 6123
## 19 35.5 4957 6181
## 20 35.6 4961 6180
## 21 35.2 4949 6161
## 22 33.2 4791 6026
## 23 32.9 NA 6002
## 24 33.6 4864 6085
## 25 33.3 4750 5994
## 26 37.3 4840 5988
## 27 38.0 4894 6022
## 28 38.1 4942 6081
## 29 38.6 5055 6213
## 30 35.3 4831 6017
## 31 35.4 4872 6050
## 32 33.5 4756 5972
## 33 33.4 4815 6033
## 34 34.5 4811 5992
## 35 34.6 4852 6047
## 36 33.9 4844 6057
## 37 33.4 4854 6051
## 38 33.1 4825 6028
## 39 33.0 4838 6029
## 40 32.8 4806 6002
## 41 33.0 4828 6020
## 42 32.8 4713 5904
## 43 33.3 4934 6110
## 44 32.5 4836 6014
## 45 32.8 4869 6061
## 46 33.2 4914 6108
## 47 32.6 4833 6009
## 48 32.6 4883 6146
## 49 32.1 4855 6077
## 50 33.9 4852 6013
## 51 33.4 4869 6043
## 52 33.8 4874 6049
## 53 33.1 4867 6061
## 54 33.6 4867 6039
## 55 33.7 4891 6059
## 56 33.9 4901 6055
## 57 33.8 4747 5918
## 58 33.5 4765 5946
## 59 32.5 4724 5926
## 60 34.6 4813 5957
## 61 34.6 4803 5958
## 62 34.0 4756 5917
## 63 34.1 4772 5957
## 64 33.9 4828 6010
## 65 32.7 4716 5937
## 66 33.3 4742 5963
## 67 32.9 4737 5967
## 68 34.2 4818 6019
## 69 34.8 4824 5974
## 70 35.5 4862 6023
## 71 35.5 4897 6043
## 72 34.2 4836 6047
## 73 33.5 4810 6039
## 74 34.8 4879 6044
## 75 35.2 4899 6059
## 76 35.0 4857 6028
## 77 34.2 4795 5991
## 78 35.1 4889 6089
## 79 34.5 4835 6014
## 80 35.2 4899 6061
## 81 35.2 4897 6048
## 82 34.9 4844 5990
## 83 34.7 4829 5998
## 84 35.1 4853 6022
## 85 35.0 4864 6030
## 86 34.8 4841 6048
## 87 34.5 4841 6052
## 88 34.6 4832 6035
## 89 35.8 4893 6028
## 90 35.6 4866 6005
## 91 35.4 4874 6012
## 92 34.2 4867 6034
## 93 35.3 4896 6062
## 94 35.6 4848 6005
## 95 35.2 4839 6020
## 96 35.3 4853 6021
## 97 35.2 4815 5991
## 98 35.1 4834 6022
## 99 34.3 4701 5914
## 100 35.3 4895 6079
## 101 35.3 4865 6037
## 102 35.4 4864 6025
## 103 35.5 4838 5997
## 104 35.3 4861 6020
## 105 35.2 4816 5983
## 106 35.2 4873 6031
## 107 35.1 4843 6016
## 108 34.7 4807 5967
## 109 35.0 4839 6013
## 110 35.1 4793 5953
## 111 35.2 4783 5932
## 112 35.9 4937 6098
## 113 35.7 4896 6050
## 114 36.2 4936 6076
## 115 34.7 4808 5941
## 116 35.2 4880 6031
## 117 34.9 4879 6047
## 118 35.1 4869 6037
## 119 35.1 4849 6011
## 120 35.6 4876 6040
## 121 34.7 4872 6060
## 122 33.9 4839 6053
## 123 34.9 4882 6056
## 124 34.3 4878 6072
## 125 33.7 4812 6032
## 126 34.4 4859 6063
## 127 35.0 4905 6061
## 128 34.8 4883 6030
## 129 35.2 4903 6056
## 130 33.8 4853 6027
## 131 34.4 4865 6034
## 132 34.6 4950 6143
## 133 34.9 4912 6091
## 134 34.5 4875 6056
## 135 34.3 4830 6001
## 136 34.4 4893 6061
## 137 34.4 4833 6004
## 138 33.4 4792 5964
## 139 34.7 4823 6003
## 140 33.7 4772 5962
## 141 34.9 4883 6042
## 142 34.4 4877 6059
## 143 34.3 4864 6044
## 144 33.9 4858 6035
## 145 34.2 4846 6027
## 146 34.2 4847 6029
## 147 34.4 4858 6046
## 148 34.2 4802 5990
## 149 34.0 4858 6067
## 150 34.4 4862 6036
## 151 34.2 4843 6021
## 152 34.6 4920 6093
## 153 34.3 4831 6017
## 154 34.4 4824 6003
## 155 34.7 4887 6076
## 156 35.0 4850 6015
## 157 34.9 4854 6014
## 158 35.3 4861 6025
## 159 34.8 4868 6012
## 160 35.3 4924 6050
## 161 35.2 4925 6058
## 162 34.5 4856 6022
## 163 34.7 4866 6040
## 164 34.4 4833 6020
## 165 33.5 4750 5952
## 166 34.4 4795 5982
## 167 34.8 4832 6024
## 168 34.4 4815 6010
## 169 34.8 4882 6022
## 170 34.9 4878 6058
## 171 34.7 4860 6041
## 172 33.9 4829 6026
## 173 34.0 4833 6029
## 174 33.1 4795 6000
## 175 32.9 4793 6029
## 176 32.9 4824 6068
## ManufacturingProcess16 ManufacturingProcess17 ManufacturingProcess18
## 1 4682 35.5 4865
## 2 4617 34.0 4867
## 3 4617 34.8 4877
## 4 4635 34.8 4872
## 5 4733 33.9 4886
## 6 4786 33.4 4862
## 7 4486 33.8 4758
## 8 4626 33.6 4766
## 9 4658 33.9 4769
## 10 4614 35.3 4840
## 11 4690 35.8 4900
## 12 4708 35.2 4878
## 13 4704 35.1 4835
## 14 4655 35.8 4858
## 15 4690 35.3 4849
## 16 4666 35.5 4842
## 17 4725 35.8 4858
## 18 4692 35.5 4811
## 19 4751 35.5 4887
## 20 4775 35.6 4869
## 21 4766 35.2 4871
## 22 4482 35.7 0
## 23 0 36.5 4902
## 24 4615 35.1 4847
## 25 4517 36.3 4887
## 26 4577 40.0 4971
## 27 4590 40.0 4971
## 28 4645 39.3 4967
## 29 4714 37.7 4960
## 30 4556 35.3 4866
## 31 4585 35.0 4857
## 32 4515 34.0 4854
## 33 4569 33.4 4773
## 34 4578 34.5 4823
## 35 4852 34.4 4861
## 36 4562 33.1 4821
## 37 4595 32.2 4794
## 38 4571 32.6 4798
## 39 4593 32.6 4800
## 40 4591 32.8 4831
## 41 4587 32.6 4815
## 42 4467 32.8 4750
## 43 4635 32.5 4873
## 44 4564 32.3 4844
## 45 4583 32.3 4905
## 46 4594 32.4 4850
## 47 4521 32.6 4853
## 48 4533 31.3 4812
## 49 4563 31.5 4836
## 50 4518 33.6 4849
## 51 4547 32.8 4827
## 52 4551 33.1 4701
## 53 4567 32.5 4836
## 54 4539 33.1 4718
## 55 4563 33.1 4880
## 56 4571 34.8 4816
## 57 4447 34.5 4829
## 58 4471 33.9 4808
## 59 4441 33.5 4792
## 60 4491 35.2 4834
## 61 4506 35.0 4846
## 62 4484 35.3 4858
## 63 4494 35.4 4885
## 64 4550 33.9 4763
## 65 4476 34.1 4818
## 66 4505 33.9 4800
## 67 4499 33.5 4785
## 68 4583 34.2 4830
## 69 4534 35.4 4862
## 70 4568 35.5 4905
## 71 4584 35.5 4907
## 72 4588 33.9 4854
## 73 4568 33.5 4827
## 74 4574 34.4 4841
## 75 4609 34.5 4867
## 76 4569 34.6 4870
## 77 4520 34.2 4844
## 78 4619 34.5 4857
## 79 4527 34.5 4827
## 80 4572 33.8 4813
## 81 4572 34.8 4881
## 82 4524 34.9 4825
## 83 4550 34.7 4879
## 84 4582 34.8 4826
## 85 4577 34.8 4887
## 86 4631 34.1 4839
## 87 4635 33.9 4830
## 88 4624 34.3 4822
## 89 4564 35.5 4879
## 90 4550 35.6 4893
## 91 4561 35.3 4885
## 92 4588 33.8 4835
## 93 4614 34.5 4844
## 94 4559 35.6 4866
## 95 4559 35.2 4849
## 96 4566 35.3 4864
## 97 4541 35.2 4834
## 98 4560 34.8 4859
## 99 4579 35.7 4911
## 100 4670 34.3 4850
## 101 4651 34.8 4839
## 102 4607 35.0 4847
## 103 4571 35.5 4855
## 104 4611 34.9 4837
## 105 4579 35.2 4834
## 106 4606 34.8 4846
## 107 4564 35.1 4850
## 108 4536 34.7 4819
## 109 4561 35.0 4856
## 110 4550 35.4 4808
## 111 4485 35.7 4935
## 112 4602 34.7 4845
## 113 4559 35.0 4849
## 114 4602 35.3 4887
## 115 4504 35.1 4822
## 116 4567 35.2 4877
## 117 4564 34.4 4827
## 118 4622 34.7 4835
## 119 4584 35.0 4844
## 120 4598 35.2 4880
## 121 4633 34.1 4828
## 122 4654 33.1 4806
## 123 4600 33.9 4814
## 124 4614 33.2 4811
## 125 4626 33.2 4797
## 126 4635 33.3 4804
## 127 4595 33.8 4820
## 128 4577 34.2 4855
## 129 4550 34.1 4805
## 130 4544 33.4 4777
## 131 4562 34.4 4926
## 132 4665 33.6 4884
## 133 4625 33.5 4842
## 134 4596 33.4 4821
## 135 4581 33.6 4809
## 136 4635 32.6 4780
## 137 4589 34.0 4831
## 138 4540 33.8 4822
## 139 4617 34.4 4831
## 140 4606 34.4 4812
## 141 4623 33.9 4826
## 142 4604 33.4 4821
## 143 4589 33.4 4820
## 144 4577 33.1 4790
## 145 4608 33.7 4612
## 146 4610 33.7 4831
## 147 4619 33.5 4813
## 148 4620 34.0 4786
## 149 4677 32.8 4768
## 150 4601 33.5 4832
## 151 4597 33.2 4780
## 152 4648 33.3 4797
## 153 4591 34.2 4821
## 154 4586 34.3 4832
## 155 4637 33.9 4829
## 156 4611 34.9 4856
## 157 4617 34.6 4834
## 158 4611 34.8 4805
## 159 4561 34.5 4844
## 160 4597 34.8 4897
## 161 4601 34.6 4863
## 162 4579 34.1 4820
## 163 4571 34.0 4844
## 164 4569 34.1 4789
## 165 4516 33.5 4765
## 166 4600 34.4 4785
## 167 4625 34.7 4816
## 168 4618 34.4 4786
## 169 4606 34.8 4884
## 170 4641 34.6 4853
## 171 4617 34.0 4822
## 172 4621 33.5 4815
## 173 4608 33.5 4807
## 174 4557 32.8 4764
## 175 4600 32.4 4787
## 176 4630 32.0 4795
## ManufacturingProcess19 ManufacturingProcess20 ManufacturingProcess21
## 1 6049 4665 0.0
## 2 6097 4621 0.0
## 3 6078 4621 0.0
## 4 6073 4611 0.0
## 5 6102 4659 -0.7
## 6 6115 4696 -0.6
## 7 6013 4522 1.4
## 8 6022 4552 0.0
## 9 6033 4556 0.0
## 10 6091 4614 1.0
## 11 6126 4665 0.0
## 12 6134 4673 -0.4
## 13 6090 4651 0.0
## 14 6070 4628 0.9
## 15 6093 4646 0.0
## 16 6091 4641 0.1
## 17 6100 4656 0.0
## 18 6041 4636 0.0
## 19 6124 4710 0.0
## 20 6094 4690 0.0
## 21 6108 4705 0.0
## 22 6111 0 2.5
## 23 6120 4621 3.6
## 24 6072 4607 1.5
## 25 6146 4653 3.0
## 26 6114 4657 2.7
## 27 6107 4675 2.0
## 28 6117 4664 1.2
## 29 6123 4639 -0.9
## 30 6028 4573 0.0
## 31 6036 4579 -0.4
## 32 6069 4600 0.5
## 33 5991 4521 0.0
## 34 6010 4579 0.0
## 35 6073 4759 -0.2
## 36 6033 4547 -0.8
## 37 5992 4552 -1.2
## 38 5986 4552 -0.5
## 39 5991 4562 -0.4
## 40 6027 4603 0.0
## 41 6005 4582 -0.4
## 42 5927 4497 0.0
## 43 6058 4598 -0.8
## 44 6032 4577 -0.2
## 45 6117 4635 -0.5
## 46 6025 4535 -0.8
## 47 6027 4538 0.0
## 48 6082 4484 -1.3
## 49 6055 4551 -0.6
## 50 6015 4525 -0.3
## 51 6014 4526 -0.6
## 52 5890 4392 -0.7
## 53 6033 4541 -0.6
## 54 5898 4404 -0.5
## 55 6048 4555 -0.6
## 56 5992 4493 0.9
## 57 6006 4531 0.7
## 58 5991 4509 0.4
## 59 6002 4506 1.0
## 60 5983 4514 0.6
## 61 6009 4535 0.4
## 62 6039 4557 1.3
## 63 6065 4571 1.3
## 64 5949 4510 0.0
## 65 6043 4586 1.4
## 66 6038 4578 0.6
## 67 6025 4558 0.6
## 68 6031 4603 0.0
## 69 6021 4567 0.6
## 70 6066 4597 0.0
## 71 6064 4596 0.0
## 72 6072 4603 -0.3
## 73 6057 4580 0.0
## 74 6018 4565 -0.4
## 75 6037 4583 -0.7
## 76 6051 4582 -0.4
## 77 6031 4579 0.0
## 78 6063 4594 -0.6
## 79 5994 4525 0.0
## 80 5977 4515 -1.4
## 81 6059 4584 -0.4
## 82 5981 4517 0.0
## 83 6040 4573 0.0
## 84 5996 4564 -0.3
## 85 6068 4599 -0.2
## 86 6062 4631 -0.7
## 87 6038 4618 -0.6
## 88 6039 4617 -0.3
## 89 6026 4556 -0.3
## 90 6046 4569 0.0
## 91 6046 4571 -0.1
## 92 6015 4569 -0.4
## 93 6021 4583 -0.8
## 94 6028 4579 0.0
## 95 6024 4576 0.0
## 96 6043 4582 0.0
## 97 6008 4555 0.0
## 98 6030 4568 -0.3
## 99 6124 4705 1.4
## 100 6022 4634 -1.0
## 101 6003 4619 -0.5
## 102 6024 4614 -0.4
## 103 6021 4584 0.0
## 104 6007 4593 -0.4
## 105 5997 4583 0.0
## 106 6014 4595 -0.4
## 107 6016 4569 0.0
## 108 5997 4544 0.0
## 109 6032 4571 0.0
## 110 5972 4551 0.3
## 111 6105 4602 0.5
## 112 6014 4533 -1.2
## 113 6010 4536 -0.7
## 114 6033 4567 -0.9
## 115 5959 4526 0.4
## 116 6035 4570 0.0
## 117 6000 4535 -0.5
## 118 5999 4585 -0.4
## 119 6013 4589 -0.1
## 120 6037 4611 -0.4
## 121 6015 4592 -0.6
## 122 6022 4623 -0.8
## 123 6004 4580 -1.0
## 124 6018 4567 -1.1
## 125 6019 4611 -0.5
## 126 6024 4601 -1.1
## 127 5982 4529 -1.2
## 128 6024 4558 -0.6
## 129 5955 4496 -1.1
## 130 5962 4509 -0.4
## 131 6122 4643 0.0
## 132 6084 4615 -1.0
## 133 6027 4575 -1.4
## 134 6003 4550 -1.1
## 135 5977 4569 -0.7
## 136 5952 4559 -1.8
## 137 6005 4601 -0.4
## 138 5985 4562 0.4
## 139 6015 4609 -0.3
## 140 5995 4621 0.7
## 141 5997 4590 -1.0
## 142 6008 4568 -1.0
## 143 6008 4550 -0.9
## 144 5980 4531 -0.8
## 145 5999 4581 -0.5
## 146 6012 4605 -0.5
## 147 6004 4590 -0.9
## 148 5983 4614 -0.2
## 149 5964 4596 -1.2
## 150 6003 4578 -0.9
## 151 5971 4553 -1.0
## 152 5977 4570 -1.3
## 153 6009 4586 -0.1
## 154 6012 4589 -0.1
## 155 6012 4599 -0.8
## 156 6027 4618 -0.1
## 157 6009 4601 -0.3
## 158 5975 4570 -0.5
## 159 5982 4542 -0.3
## 160 6022 4586 -0.5
## 161 6016 4594 -0.6
## 162 5989 4544 -0.4
## 163 6028 4553 -0.7
## 164 5973 4532 -0.3
## 165 5956 4520 0.0
## 166 5984 4587 0.0
## 167 6001 4601 -0.1
## 168 5986 4590 0.0
## 169 6026 4613 0.0
## 170 6047 4630 -0.3
## 171 6000 4588 -0.7
## 172 6011 4612 -0.4
## 173 6001 4584 -0.5
## 174 5977 4538 -0.3
## 175 6030 4592 -0.5
## 176 6050 4607 -0.9
## ManufacturingProcess22 ManufacturingProcess23 ManufacturingProcess24
## 1 NA NA NA
## 2 3 0 3
## 3 4 1 4
## 4 5 2 5
## 5 8 4 18
## 6 9 1 1
## 7 1 1 1
## 8 2 2 2
## 9 3 3 3
## 10 4 1 4
## 11 6 3 6
## 12 7 4 7
## 13 8 1 8
## 14 10 2 2
## 15 11 3 15
## 16 12 4 16
## 17 1 1 1
## 18 2 1 2
## 19 3 2 3
## 20 4 3 4
## 21 5 4 5
## 22 6 2 16
## 23 7 3 17
## 24 1 1 1
## 25 5 5 12
## 26 1 1 6
## 27 2 2 7
## 28 3 3 8
## 29 4 4 9
## 30 6 4 4
## 31 7 1 5
## 32 8 2 6
## 33 9 3 7
## 34 5 5 12
## 35 3 3 16
## 36 1 1 13
## 37 3 2 2
## 38 4 3 3
## 39 5 4 4
## 40 7 2 6
## 41 8 3 7
## 42 1 1 1
## 43 2 2 2
## 44 3 3 3
## 45 4 4 4
## 46 5 5 5
## 47 6 6 6
## 48 7 1 7
## 49 9 3 9
## 50 10 4 10
## 51 11 5 11
## 52 12 6 12
## 53 1 1 13
## 54 2 2 14
## 55 3 3 15
## 56 4 4 16
## 57 5 5 17
## 58 6 6 18
## 59 7 1 1
## 60 9 3 3
## 61 10 4 4
## 62 11 5 5
## 63 12 6 6
## 64 1 1 7
## 65 2 2 8
## 66 3 3 9
## 67 4 4 10
## 68 6 6 12
## 69 1 1 13
## 70 2 2 14
## 71 3 3 15
## 72 5 5 17
## 73 6 6 18
## 74 7 1 1
## 75 8 2 2
## 76 9 3 3
## 77 10 4 4
## 78 11 5 5
## 79 1 1 7
## 80 2 2 8
## 81 3 3 9
## 82 4 4 10
## 83 6 6 12
## 84 1 1 13
## 85 2 2 14
## 86 3 3 15
## 87 4 4 16
## 88 5 5 17
## 89 7 2 2
## 90 8 3 3
## 91 9 4 4
## 92 10 5 5
## 93 11 6 6
## 94 1 1 7
## 95 3 3 9
## 96 4 4 10
## 97 5 5 11
## 98 6 6 12
## 99 2 2 14
## 100 3 3 15
## 101 4 4 16
## 102 5 5 17
## 103 6 6 18
## 104 7 1 1
## 105 8 2 2
## 106 9 3 3
## 107 10 4 4
## 108 11 5 5
## 109 12 6 6
## 110 1 1 7
## 111 3 3 9
## 112 4 4 10
## 113 5 5 11
## 114 6 6 12
## 115 7 1 13
## 116 8 2 14
## 117 1 1 15
## 118 2 2 16
## 119 3 3 17
## 120 4 4 18
## 121 5 5 19
## 122 6 6 20
## 123 7 1 1
## 124 8 2 2
## 125 9 3 3
## 126 10 4 4
## 127 11 5 5
## 128 12 6 6
## 129 1 1 7
## 130 2 2 8
## 131 3 3 9
## 132 4 4 10
## 133 1 1 12
## 134 2 2 13
## 135 3 3 14
## 136 4 4 15
## 137 5 5 16
## 138 7 1 1
## 139 8 2 2
## 140 9 3 3
## 141 10 4 4
## 142 11 5 5
## 143 12 6 6
## 144 1 1 7
## 145 2 2 8
## 146 3 3 9
## 147 4 1 10
## 148 6 3 12
## 149 7 4 13
## 150 8 5 14
## 151 9 6 15
## 152 1 1 16
## 153 2 2 17
## 154 3 3 18
## 155 4 4 19
## 156 7 3 3
## 157 8 4 4
## 158 9 5 5
## 159 10 1 6
## 160 11 2 7
## 161 12 3 8
## 162 2 1 10
## 163 9 5 17
## 164 1 1 19
## 165 2 2 20
## 166 3 3 21
## 167 4 4 22
## 168 5 5 23
## 169 7 1 1
## 170 8 2 2
## 171 9 3 3
## 172 2 2 8
## 173 0 0 0
## 174 0 0 0
## 175 0 0 0
## 176 0 0 0
## ManufacturingProcess25 ManufacturingProcess26 ManufacturingProcess27
## 1 4873 6074 4685
## 2 4869 6107 4630
## 3 4897 6116 4637
## 4 4892 6111 4630
## 5 4930 6151 4684
## 6 4871 6128 4687
## 7 4795 6057 4572
## 8 4806 6059 4586
## 9 4842 6103 4609
## 10 4893 6135 4650
## 11 4925 6161 4687
## 12 4924 6161 4692
## 13 4888 6129 4653
## 14 4911 6124 4684
## 15 4874 6125 4659
## 16 4848 6095 4630
## 17 4860 6100 4659
## 18 4815 6055 4631
## 19 4876 6109 4696
## 20 4850 6094 4665
## 21 4879 6117 4696
## 22 4918 6152 4618
## 23 4906 6134 4626
## 24 4875 6095 4606
## 25 4907 6150 4631
## 26 4990 6160 4693
## 27 4966 6112 4660
## 28 4961 6112 4649
## 29 4966 6137 4641
## 30 4863 6039 4564
## 31 4872 6060 4583
## 32 4842 6057 4574
## 33 4820 6042 4563
## 34 4829 6020 4590
## 35 4854 6061 4654
## 36 4818 6041 4537
## 37 4798 5982 4534
## 38 4820 6006 4552
## 39 4820 6013 4554
## 40 4847 6053 4607
## 41 4837 6050 4598
## 42 4784 5974 4543
## 43 4900 6089 4617
## 44 4869 6061 4603
## 45 4885 6098 4611
## 46 4854 6034 4547
## 47 4864 6056 4556
## 48 4816 6086 4481
## 49 4850 6099 4548
## 50 4866 6045 4531
## 51 4846 6032 4521
## 52 4721 5901 4416
## 53 4861 6071 4550
## 54 4747 5929 4423
## 55 4890 6069 4552
## 56 4847 6021 4518
## 57 4853 6033 4545
## 58 4820 6016 4524
## 59 4811 6016 4519
## 60 4863 6019 4541
## 61 4867 6041 4554
## 62 4877 6051 4587
## 63 4889 6069 4590
## 64 4814 6010 4545
## 65 4835 6074 4592
## 66 4841 6084 4593
## 67 4819 6065 4575
## 68 4857 6065 4613
## 69 4877 6036 4569
## 70 4901 6063 4588
## 71 4916 6075 4595
## 72 4876 6106 4609
## 73 4825 6063 4582
## 74 4849 6041 4557
## 75 4883 6045 4583
## 76 4890 6058 4587
## 77 4859 6058 4581
## 78 4876 6087 4601
## 79 4835 6015 4537
## 80 4834 6015 4526
## 81 4898 6073 4573
## 82 4878 6049 4546
## 83 4881 6060 4576
## 84 4866 6051 4567
## 85 4907 6087 4602
## 86 4867 6082 4642
## 87 4844 6067 4632
## 88 4838 6053 4622
## 89 4873 6023 4546
## 90 4897 6047 4572
## 91 4885 6042 4546
## 92 4846 6019 4572
## 93 4870 6054 4595
## 94 4887 6056 4575
## 95 4872 6054 4566
## 96 4889 6070 4590
## 97 4862 6040 4562
## 98 4869 6050 4574
## 99 4923 6137 4710
## 100 4855 6046 4644
## 101 4856 6041 4634
## 102 4865 6041 4606
## 103 4886 6051 4594
## 104 4845 6019 4590
## 105 4841 6010 4583
## 106 4853 6027 4605
## 107 4857 6036 4577
## 108 0 0 0
## 109 4859 6037 4590
## 110 4854 6013 4594
## 111 4912 6080 4572
## 112 4859 6011 4535
## 113 4871 6027 4544
## 114 4884 6037 4563
## 115 4848 5976 4524
## 116 4902 6060 4566
## 117 4858 6029 4546
## 118 4857 6032 4598
## 119 4863 6036 4608
## 120 4873 6043 4601
## 121 4844 6055 4617
## 122 4825 6053 4657
## 123 4820 6022 4585
## 124 4824 6045 4578
## 125 4809 6057 4623
## 126 4820 6050 4606
## 127 4829 6009 4534
## 128 4862 6035 4564
## 129 4832 5990 4533
## 130 4856 6058 4580
## 131 4935 6145 4651
## 132 4895 6120 4632
## 133 4846 6040 4574
## 134 4816 6037 4568
## 135 4817 6012 4584
## 136 4785 5973 4557
## 137 4843 6014 4599
## 138 4841 5996 4569
## 139 4822 6018 4606
## 140 4806 6000 4612
## 141 4840 6001 4588
## 142 4829 6026 4572
## 143 4823 6022 4558
## 144 4802 5993 4533
## 145 4851 6049 4596
## 146 4844 6035 4588
## 147 4827 6011 4581
## 148 4783 5983 4597
## 149 4776 5995 4607
## 150 4841 6023 4581
## 151 4781 5983 4551
## 152 4812 6008 4567
## 153 4864 6056 4600
## 154 4839 6019 4585
## 155 4844 6025 4594
## 156 4852 6031 4606
## 157 4839 6015 4594
## 158 4862 6060 4609
## 159 4852 6009 4556
## 160 4906 6040 4586
## 161 4906 6047 4585
## 162 4846 6015 4541
## 163 4855 6055 4581
## 164 4809 5990 4536
## 165 4790 5993 4541
## 166 4815 5991 4597
## 167 4837 6024 4608
## 168 4815 6011 4594
## 169 4903 6034 4606
## 170 4872 6058 4629
## 171 4832 6013 4585
## 172 NA NA NA
## 173 NA NA NA
## 174 NA NA NA
## 175 NA NA NA
## 176 NA NA NA
## ManufacturingProcess28 ManufacturingProcess29 ManufacturingProcess30
## 1 10.7 21.0 9.9
## 2 11.2 21.4 9.9
## 3 11.1 21.3 9.4
## 4 11.1 21.3 9.4
## 5 11.3 21.6 9.0
## 6 11.4 21.7 10.1
## 7 11.2 21.2 11.2
## 8 11.1 21.2 10.9
## 9 11.3 21.5 10.5
## 10 11.4 21.7 9.8
## 11 11.5 21.9 9.4
## 12 11.5 22.0 9.4
## 13 11.4 21.7 9.9
## 14 11.1 21.5 9.4
## 15 11.3 21.6 9.9
## 16 11.1 21.2 10.3
## 17 11.1 21.3 10.0
## 18 10.8 20.9 10.6
## 19 11.1 21.4 9.8
## 20 11.0 21.2 10.1
## 21 11.1 21.5 9.9
## 22 11.4 21.1 8.8
## 23 11.2 21.0 8.9
## 24 11.2 20.9 9.5
## 25 11.5 21.3 9.2
## 26 11.0 21.0 7.5
## 27 10.7 20.6 7.6
## 28 10.7 20.5 7.6
## 29 10.8 20.7 7.6
## 30 10.6 20.1 9.0
## 31 10.7 20.4 9.1
## 32 10.9 20.4 9.7
## 33 10.9 20.4 10.0
## 34 10.6 20.1 9.7
## 35 10.7 20.4 9.5
## 36 10.9 20.4 10.1
## 37 10.4 19.8 10.1
## 38 10.5 20.0 9.8
## 39 10.6 20.1 9.8
## 40 10.9 20.5 9.7
## 41 10.9 20.4 9.8
## 42 10.3 19.6 10.1
## 43 10.8 20.5 8.6
## 44 10.7 20.3 9.0
## 45 11.0 20.6 8.9
## 46 10.6 20.0 9.1
## 47 10.7 20.2 9.0
## 48 11.0 20.2 9.9
## 49 11.2 20.7 9.6
## 50 10.6 20.0 8.8
## 51 10.6 20.0 9.2
## 52 10.0 18.9 10.8
## 53 10.9 20.5 9.3
## 54 10.1 19.2 10.5
## 55 10.7 20.3 8.6
## 56 10.5 19.9 9.1
## 57 10.6 20.1 9.2
## 58 10.6 20.0 9.7
## 59 10.7 20.1 10.0
## 60 10.4 19.9 8.8
## 61 10.6 20.1 8.9
## 62 10.7 20.3 8.9
## 63 10.8 20.4 8.8
## 64 10.4 19.8 9.7
## 65 10.9 20.4 9.7
## 66 11.0 20.5 9.7
## 67 10.9 20.4 10.0
## 68 10.7 20.3 9.3
## 69 10.4 20.0 8.7
## 70 10.6 20.2 8.4
## 71 10.6 20.3 8.2
## 72 11.1 20.8 9.3
## 73 11.0 20.5 9.9
## 74 10.3 19.6 8.9
## 75 10.2 19.6 8.3
## 76 10.3 19.7 8.3
## 77 10.5 19.8 8.9
## 78 10.6 20.0 8.8
## 79 10.3 19.5 9.1
## 80 10.3 19.5 9.1
## 81 10.5 19.9 8.3
## 82 10.3 19.6 8.4
## 83 10.5 19.9 8.6
## 84 10.4 19.7 8.7
## 85 10.5 20.0 8.2
## 86 10.7 20.2 9.1
## 87 10.7 20.1 9.4
## 88 10.6 20.0 9.4
## 89 10.2 19.5 8.4
## 90 10.3 19.7 8.1
## 91 10.3 19.7 8.3
## 92 10.3 19.6 9.1
## 93 10.5 19.9 8.8
## 94 10.4 19.8 8.4
## 95 10.5 19.9 8.8
## 96 10.5 20.0 8.5
## 97 10.4 19.7 8.8
## 98 10.5 19.9 8.8
## 99 11.0 20.7 8.6
## 100 10.5 19.9 9.2
## 101 10.4 19.9 9.1
## 102 10.4 19.7 8.8
## 103 10.3 19.7 8.3
## 104 10.2 19.6 9.0
## 105 10.2 19.5 9.1
## 106 0.0 19.7 9.0
## 107 0.0 19.7 8.9
## 108 0.0 0.0 0.0
## 109 0.0 19.7 8.8
## 110 0.0 19.5 8.9
## 111 0.0 19.9 8.0
## 112 0.0 19.3 8.6
## 113 0.0 19.5 8.4
## 114 0.0 19.5 8.2
## 115 0.0 19.2 8.7
## 116 0.0 19.9 8.1
## 117 0.0 19.6 8.8
## 118 0.0 19.7 9.0
## 119 0.0 19.7 8.9
## 120 0.0 19.8 8.7
## 121 0.0 20.0 9.4
## 122 0.0 20.2 10.0
## 123 0.0 19.8 9.6
## 124 0.0 20.0 9.7
## 125 0.0 20.2 10.1
## 126 0.0 20.1 9.9
## 127 0.0 19.5 9.1
## 128 0.0 19.7 8.8
## 129 0.0 19.3 9.1
## 130 0.0 20.0 9.1
## 131 0.0 20.7 8.1
## 132 0.0 20.5 8.6
## 133 0.0 19.8 9.1
## 134 0.0 19.8 9.6
## 135 0.0 19.6 9.6
## 136 0.0 19.3 10.0
## 137 0.0 19.6 9.2
## 138 0.0 19.4 9.1
## 139 0.0 19.8 9.6
## 140 0.0 19.7 9.9
## 141 0.0 19.6 9.2
## 142 0.0 19.8 9.4
## 143 0.0 19.7 9.5
## 144 0.0 19.5 9.8
## 145 0.0 20.0 9.3
## 146 0.0 19.9 9.4
## 147 0.0 19.7 9.6
## 148 0.0 19.5 10.2
## 149 0.0 19.7 10.5
## 150 0.0 19.8 9.3
## 151 0.0 19.5 10.1
## 152 0.0 19.7 9.7
## 153 0.0 20.0 9.0
## 154 0.0 19.7 9.3
## 155 0.0 19.8 9.3
## 156 0.0 19.8 9.1
## 157 0.0 19.7 9.3
## 158 0.0 20.1 9.1
## 159 0.0 19.4 8.8
## 160 0.0 19.7 8.0
## 161 0.0 19.7 8.1
## 162 0.0 19.6 9.0
## 163 0.0 19.9 9.1
## 164 0.0 19.5 9.6
## 165 0.0 19.5 10.1
## 166 0.0 19.6 9.7
## 167 0.0 19.8 9.4
## 168 0.0 19.7 9.7
## 169 0.0 19.5 8.0
## 170 0.0 20.1 8.9
## 171 0.0 19.7 9.4
## 172 NA NA NA
## 173 NA NA NA
## 174 NA NA NA
## 175 NA NA NA
## 176 NA NA NA
## ManufacturingProcess31 ManufacturingProcess32 ManufacturingProcess33
## 1 69.1 156 66
## 2 68.7 169 66
## 3 69.3 173 66
## 4 69.3 171 68
## 5 69.4 171 70
## 6 68.2 173 70
## 7 67.6 159 65
## 8 67.9 161 65
## 9 68.0 160 65
## 10 68.5 164 66
## 11 68.7 166 67
## 12 68.6 169 67
## 13 68.4 166 68
## 14 69.1 161 66
## 15 68.5 160 64
## 16 68.5 166 66
## 17 68.7 167 68
## 18 69.0 157 64
## 19 68.8 156 64
## 20 68.7 155 62
## 21 68.7 157 63
## 22 70.1 162 68
## 23 70.1 160 66
## 24 69.7 161 65
## 25 69.5 167 66
## 26 71.5 161 65
## 27 71.9 159 65
## 28 71.8 157 64
## 29 71.7 158 63
## 30 70.9 157 64
## 31 70.6 160 63
## 32 69.9 163 66
## 33 69.6 161 64
## 34 70.3 156 61
## 35 70.1 155 61
## 36 69.5 153 63
## 37 70.1 166 65
## 38 70.2 166 65
## 39 70.1 166 68
## 40 69.9 160 65
## 41 59.8 159 64
## 42 70.3 157 61
## 43 70.8 163 64
## 44 70.7 160 63
## 45 70.4 162 64
## 46 70.9 165 65
## 47 70.7 168 65
## 48 69.9 164 69
## 49 69.7 167 68
## 50 71.2 170 68
## 51 70.8 169 67
## 52 70.2 162 65
## 53 70.3 165 66
## 54 70.3 157 63
## 55 71.2 164 67
## 56 71.0 160 66
## 57 70.7 156 63
## 58 70.3 156 64
## 59 69.9 157 63
## 60 71.3 160 63
## 61 71.0 161 64
## 62 70.8 153 61
## 63 70.8 156 62
## 64 70.5 150 60
## 65 69.8 162 63
## 66 69.8 163 63
## 67 69.6 160 62
## 68 70.4 162 64
## 69 71.3 156 62
## 70 71.4 159 63
## 71 70.5 158 62
## 72 69.9 162 65
## 73 69.6 160 63
## 74 71.6 158 64
## 75 72.1 156 62
## 76 72.0 159 64
## 77 71.2 157 61
## 78 71.2 163 65
## 79 71.3 156 63
## 80 71.4 154 61
## 81 71.8 159 65
## 82 72.1 167 65
## 83 71.5 164 65
## 84 71.6 164 66
## 85 71.8 165 68
## 86 70.7 160 64
## 87 70.5 159 64
## 88 70.6 159 62
## 89 72.1 163 65
## 90 72.2 157 64
## 91 72.0 158 63
## 92 71.3 156 62
## 93 71.3 154 60
## 94 71.8 158 63
## 95 71.4 164 66
## 96 71.6 160 64
## 97 71.5 159 64
## 98 71.3 160 64
## 99 70.7 154 63
## 100 70.9 151 60
## 101 71.1 150 60
## 102 71.4 154 62
## 103 72.0 157 63
## 104 71.4 156 62
## 105 71.4 155 62
## 106 71.4 156 62
## 107 71.5 156 63
## 108 0.0 156 62
## 109 71.5 155 62
## 110 71.6 155 63
## 111 72.1 162 65
## 112 72.1 158 63
## 113 72.1 160 64
## 114 72.3 161 65
## 115 72.1 163 65
## 116 72.0 167 68
## 117 71.6 163 65
## 118 71.3 153 61
## 119 71.4 156 61
## 120 71.5 157 61
## 121 70.6 149 59
## 122 69.9 146 56
## 123 70.6 159 64
## 124 70.3 160 64
## 125 69.7 151 58
## 126 70.1 154 60
## 127 71.4 160 63
## 128 71.6 160 66
## 129 71.6 162 65
## 130 70.9 158 64
## 131 71.2 160 65
## 132 70.9 158 65
## 133 71.1 158 65
## 134 70.6 152 62
## 135 70.8 150 62
## 136 70.6 149 60
## 137 71.2 151 61
## 138 71.5 153 64
## 139 70.6 152 60
## 140 70.4 151 59
## 141 71.3 152 60
## 142 70.7 156 61
## 143 70.8 156 61
## 144 70.7 156 64
## 145 70.7 153 62
## 146 70.7 152 63
## 147 70.7 153 61
## 148 70.3 149 59
## 149 69.8 143 56
## 150 70.9 151 60
## 151 70.4 148 59
## 152 70.6 154 63
## 153 71.0 155 63
## 154 70.9 154 61
## 155 70.9 152 61
## 156 71.0 152 65
## 157 71.0 154 64
## 158 70.8 156 63
## 159 71.8 156 64
## 160 72.3 158 65
## 161 72.2 158 63
## 162 71.4 158 64
## 163 71.0 158 65
## 164 70.9 155 61
## 165 70.4 149 59
## 166 70.7 151 61
## 167 70.8 151 60
## 168 70.5 150 60
## 169 72.5 158 66
## 170 71.0 160 66
## 171 71.0 160 63
## 172 NA 156 NA
## 173 NA 158 NA
## 174 NA 167 NA
## 175 NA 156 NA
## 176 NA 160 NA
## ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36
## 1 2.4 486 0.019
## 2 2.6 508 0.019
## 3 2.6 509 0.018
## 4 2.5 496 0.018
## 5 2.5 468 0.017
## 6 2.5 490 0.018
## 7 2.5 475 0.019
## 8 2.5 478 0.019
## 9 2.5 491 0.019
## 10 2.5 488 0.019
## 11 2.5 493 0.019
## 12 2.5 498 0.018
## 13 2.4 490 0.018
## 14 2.4 490 0.019
## 15 2.5 490 0.019
## 16 2.5 493 0.019
## 17 2.5 495 0.019
## 18 2.5 497 0.020
## 19 2.4 514 0.021
## 20 2.5 490 0.020
## 21 2.5 495 0.020
## 22 2.4 479 0.018
## 23 2.4 492 0.019
## 24 2.5 468 0.018
## 25 2.5 505 0.019
## 26 2.5 500 0.019
## 27 2.4 492 0.019
## 28 2.5 522 0.021
## 29 2.5 499 0.020
## 30 2.5 504 0.020
## 31 2.5 486 0.019
## 32 2.5 486 0.019
## 33 2.5 476 0.018
## 34 2.5 496 0.020
## 35 2.5 507 0.020
## 36 2.4 481 0.020
## 37 2.6 495 0.019
## 38 2.5 484 0.018
## 39 2.4 506 0.019
## 40 2.5 488 0.019
## 41 2.5 493 0.019
## 42 2.6 509 0.020
## 43 2.5 498 0.019
## 44 2.5 501 0.020
## 45 2.5 490 0.019
## 46 2.5 490 0.019
## 47 2.6 492 0.018
## 48 2.4 493 0.019
## 49 2.4 490 0.018
## 50 2.5 490 0.018
## 51 2.5 504 0.019
## 52 2.5 496 0.019
## 53 2.5 495 0.019
## 54 2.5 501 0.020
## 55 2.5 483 0.018
## 56 2.4 509 0.020
## 57 2.5 463 0.019
## 58 2.4 488 0.020
## 59 2.5 512 0.020
## 60 2.5 499 0.019
## 61 2.5 513 0.020
## 62 2.5 484 0.020
## 63 2.5 502 0.020
## 64 2.5 492 0.021
## 65 2.6 492 0.019
## 66 2.6 498 0.019
## 67 2.6 504 0.020
## 68 2.5 494 0.019
## 69 2.5 500 0.020
## 70 2.5 487 0.019
## 71 2.6 484 0.019
## 72 2.5 494 0.019
## 73 2.6 500 0.020
## 74 2.5 495 0.020
## 75 2.5 497 0.020
## 76 2.5 497 0.020
## 77 2.6 507 0.020
## 78 2.5 498 0.019
## 79 2.5 494 0.020
## 80 2.5 517 0.021
## 81 2.4 495 0.019
## 82 2.6 507 0.019
## 83 2.5 492 0.019
## 84 2.5 506 0.019
## 85 2.4 493 0.019
## 86 2.5 499 0.019
## 87 2.5 513 0.020
## 88 2.5 498 0.020
## 89 2.5 486 0.019
## 90 2.5 493 0.020
## 91 2.5 478 0.019
## 92 2.5 522 0.021
## 93 2.5 492 0.020
## 94 2.5 491 0.019
## 95 2.5 490 0.019
## 96 2.5 482 0.019
## 97 2.5 499 0.020
## 98 2.5 493 0.019
## 99 2.4 490 0.020
## 100 2.5 491 0.020
## 101 2.5 486 0.020
## 102 2.5 507 0.021
## 103 2.5 498 0.020
## 104 2.5 496 0.020
## 105 2.5 481 0.019
## 106 2.5 493 0.020
## 107 2.5 495 0.020
## 108 2.5 485 0.019
## 109 2.5 491 0.020
## 110 2.5 510 0.021
## 111 2.5 494 0.019
## 112 2.5 488 0.019
## 113 2.5 497 0.019
## 114 2.5 500 0.019
## 115 2.5 492 0.019
## 116 2.5 501 0.019
## 117 2.5 495 0.019
## 118 2.5 500 0.020
## 119 2.6 501 0.020
## 120 2.6 497 0.020
## 121 2.6 486 0.020
## 122 2.6 499 0.021
## 123 2.5 489 0.019
## 124 2.6 481 0.019
## 125 2.5 498 0.021
## 126 2.5 505 0.020
## 127 2.5 507 0.020
## 128 2.4 502 0.020
## 129 2.5 500 0.019
## 130 2.5 516 0.020
## 131 2.5 490 0.019
## 132 2.4 501 0.020
## 133 2.5 499 0.020
## 134 2.5 495 0.020
## 135 2.4 502 0.021
## 136 2.5 500 0.021
## 137 2.5 495 0.020
## 138 2.4 502 0.021
## 139 2.6 497 0.020
## 140 2.6 509 0.021
## 141 2.5 494 0.020
## 142 2.5 497 0.020
## 143 2.5 509 0.020
## 144 2.4 493 0.020
## 145 2.5 485 0.020
## 146 2.4 517 0.021
## 147 2.5 472 0.019
## 148 2.5 490 0.021
## 149 2.5 496 0.022
## 150 2.5 470 0.019
## 151 2.5 507 0.021
## 152 2.5 500 0.020
## 153 2.4 493 0.020
## 154 2.5 501 0.020
## 155 2.5 470 0.019
## 156 2.3 505 0.021
## 157 2.4 517 0.021
## 158 2.5 502 0.020
## 159 2.5 502 0.020
## 160 2.4 481 0.019
## 161 2.5 506 0.020
## 162 2.5 520 0.021
## 163 2.4 482 0.019
## 164 2.5 488 0.020
## 165 2.5 512 0.021
## 166 2.5 511 0.021
## 167 2.5 507 0.021
## 168 2.5 518 0.022
## 169 2.4 475 0.019
## 170 2.4 496 0.019
## 171 2.5 496 0.019
## 172 NA NA NA
## 173 NA NA NA
## 174 NA NA NA
## 175 NA NA NA
## 176 NA NA NA
## ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39
## 1 0.5 3 7.2
## 2 2.0 2 7.2
## 3 0.7 2 7.2
## 4 1.2 2 7.2
## 5 0.2 2 7.3
## 6 0.4 2 7.2
## 7 0.8 2 7.3
## 8 1.0 2 7.3
## 9 1.2 3 7.4
## 10 1.8 3 7.1
## 11 1.5 2 7.0
## 12 0.3 3 7.0
## 13 1.1 3 7.1
## 14 0.6 3 7.4
## 15 1.6 3 7.2
## 16 1.2 3 7.3
## 17 1.3 3 7.4
## 18 1.1 3 7.4
## 19 0.7 3 7.3
## 20 1.2 2 7.3
## 21 0.9 3 7.3
## 22 0.9 2 7.4
## 23 1.5 3 7.4
## 24 1.3 2 7.2
## 25 1.0 2 7.2
## 26 0.9 3 6.9
## 27 0.9 3 7.1
## 28 0.9 3 7.4
## 29 1.9 3 7.3
## 30 0.7 3 6.8
## 31 1.6 2 7.1
## 32 0.7 2 7.1
## 33 1.6 2 7.2
## 34 1.1 2 7.5
## 35 1.7 3 7.3
## 36 1.0 2 7.4
## 37 0.9 3 7.1
## 38 1.7 2 7.1
## 39 0.0 2 7.1
## 40 0.0 2 7.2
## 41 0.0 2 7.2
## 42 1.1 3 7.4
## 43 0.9 3 7.3
## 44 1.0 3 7.1
## 45 0.3 2 7.1
## 46 1.2 3 7.0
## 47 0.7 3 7.4
## 48 1.8 3 6.7
## 49 0.6 3 7.3
## 50 0.8 3 7.3
## 51 1.3 3 7.1
## 52 0.4 3 7.1
## 53 1.9 3 7.4
## 54 1.4 3 7.3
## 55 0.9 3 7.2
## 56 0.6 3 7.3
## 57 1.1 2 7.3
## 58 0.5 3 7.3
## 59 1.4 3 7.1
## 60 0.8 3 7.0
## 61 0.7 3 7.1
## 62 1.3 2 7.1
## 63 0.5 3 7.1
## 64 1.1 2 7.1
## 65 1.0 2 7.0
## 66 1.0 3 6.9
## 67 0.5 3 6.8
## 68 0.4 3 7.0
## 69 1.1 3 7.3
## 70 0.9 3 7.1
## 71 0.7 3 7.0
## 72 1.3 3 7.1
## 73 0.6 2 7.0
## 74 1.1 3 7.4
## 75 1.9 2 7.1
## 76 0.7 2 7.0
## 77 0.8 3 7.1
## 78 1.7 3 7.0
## 79 1.0 3 7.1
## 80 1.2 3 7.1
## 81 0.3 2 7.1
## 82 0.2 3 7.1
## 83 0.3 3 7.1
## 84 0.9 2 7.2
## 85 0.9 2 7.1
## 86 1.4 3 7.2
## 87 0.9 2 7.1
## 88 1.2 2 7.2
## 89 0.8 2 7.2
## 90 1.2 2 7.2
## 91 1.0 2 7.2
## 92 0.8 3 7.2
## 93 1.1 2 7.2
## 94 0.9 2 7.2
## 95 1.0 2 7.2
## 96 1.0 2 7.2
## 97 0.7 2 7.2
## 98 0.9 2 7.3
## 99 0.8 3 7.2
## 100 1.3 2 7.2
## 101 1.6 2 7.2
## 102 0.8 3 7.2
## 103 1.3 3 7.2
## 104 0.7 3 7.3
## 105 1.0 2 6.9
## 106 0.5 3 7.1
## 107 1.4 3 7.0
## 108 0.7 3 7.0
## 109 1.5 2 7.1
## 110 0.6 3 7.3
## 111 0.7 2 7.0
## 112 0.7 3 7.0
## 113 0.9 2 7.0
## 114 0.7 3 7.1
## 115 1.3 3 7.1
## 116 0.4 3 7.2
## 117 1.0 3 6.9
## 118 0.9 3 7.0
## 119 0.7 2 7.1
## 120 0.5 3 6.9
## 121 1.1 3 6.9
## 122 0.5 2 7.0
## 123 0.9 2 7.1
## 124 0.7 2 7.1
## 125 1.1 3 7.1
## 126 0.7 3 7.0
## 127 1.0 3 7.2
## 128 0.7 2 7.2
## 129 0.4 2 7.0
## 130 0.8 3 7.0
## 131 1.0 2 7.2
## 132 0.4 3 7.2
## 133 0.6 2 7.2
## 134 1.3 2 7.3
## 135 1.1 3 7.2
## 136 1.1 2 7.2
## 137 1.1 3 7.3
## 138 1.1 3 7.3
## 139 1.1 3 7.2
## 140 1.3 3 7.3
## 141 1.0 3 7.2
## 142 1.0 3 7.2
## 143 1.0 3 7.2
## 144 1.1 2 7.3
## 145 1.8 2 7.3
## 146 1.0 3 7.3
## 147 2.0 2 7.1
## 148 0.7 2 7.2
## 149 1.0 3 7.1
## 150 1.3 2 7.2
## 151 0.6 3 7.2
## 152 0.8 3 7.4
## 153 1.8 2 7.3
## 154 0.7 3 7.3
## 155 1.7 2 7.3
## 156 1.5 3 7.3
## 157 0.4 3 7.3
## 158 1.7 3 7.3
## 159 0.9 3 7.3
## 160 1.3 2 7.2
## 161 0.9 3 7.3
## 162 0.5 3 7.4
## 163 1.6 3 7.3
## 164 1.0 3 7.3
## 165 1.8 3 7.3
## 166 1.1 3 7.2
## 167 1.9 3 7.3
## 168 1.6 3 7.3
## 169 1.6 3 0.0
## 170 1.4 3 0.0
## 171 0.6 3 0.0
## 172 2.3 0 0.0
## 173 1.0 0 0.0
## 174 1.3 0 0.0
## 175 2.3 0 0.0
## 176 0.9 0 0.0
## ManufacturingProcess40 ManufacturingProcess41 ManufacturingProcess42
## 1 NA NA 11.6
## 2 0.1 0.15 11.1
## 3 0.0 0.00 12.0
## 4 0.0 0.00 10.6
## 5 0.0 0.00 11.0
## 6 0.0 0.00 11.5
## 7 0.0 0.00 11.7
## 8 0.0 0.00 11.4
## 9 0.0 0.00 11.4
## 10 0.0 0.00 11.3
## 11 0.0 0.00 11.0
## 12 0.0 0.00 11.2
## 13 0.0 0.00 11.1
## 14 0.0 0.00 11.7
## 15 0.0 0.00 11.6
## 16 0.1 0.20 11.6
## 17 0.0 0.00 11.5
## 18 0.0 0.00 11.7
## 19 0.0 0.00 11.6
## 20 0.0 0.00 11.4
## 21 0.1 0.20 11.4
## 22 0.0 0.00 11.9
## 23 0.0 0.00 11.6
## 24 0.0 0.00 11.4
## 25 0.0 0.00 11.5
## 26 0.0 0.00 11.8
## 27 0.0 0.00 11.7
## 28 0.0 0.00 11.6
## 29 0.1 0.20 11.7
## 30 0.0 0.00 11.6
## 31 0.0 0.00 11.7
## 32 0.0 0.00 11.6
## 33 0.1 0.10 11.6
## 34 0.1 0.10 11.6
## 35 0.0 0.00 11.7
## 36 0.1 0.20 11.0
## 37 0.0 0.00 11.2
## 38 0.0 0.00 11.1
## 39 0.1 0.20 11.0
## 40 0.0 0.00 11.4
## 41 0.0 0.00 10.9
## 42 0.0 0.00 11.4
## 43 0.1 0.10 11.4
## 44 0.0 0.00 11.0
## 45 0.0 0.00 10.5
## 46 0.0 0.00 10.7
## 47 0.0 0.00 11.1
## 48 0.1 0.10 11.6
## 49 0.0 0.00 11.6
## 50 0.0 0.00 11.6
## 51 0.0 0.00 11.4
## 52 0.1 0.20 11.4
## 53 0.0 0.00 11.4
## 54 0.0 0.00 11.6
## 55 0.0 0.00 11.2
## 56 0.0 0.00 11.0
## 57 0.1 0.20 11.0
## 58 0.0 0.00 11.3
## 59 0.0 0.00 11.8
## 60 0.0 0.00 11.5
## 61 0.1 0.10 11.6
## 62 0.0 0.00 11.7
## 63 0.0 0.00 11.6
## 64 0.0 0.00 11.5
## 65 0.0 0.00 11.6
## 66 0.0 0.00 11.7
## 67 0.0 0.00 11.7
## 68 0.0 0.00 11.2
## 69 0.0 0.00 11.9
## 70 0.1 0.10 11.9
## 71 0.0 0.00 11.5
## 72 0.0 0.00 11.7
## 73 0.0 0.00 11.5
## 74 0.1 0.10 11.7
## 75 0.0 0.00 11.8
## 76 0.0 0.00 11.6
## 77 0.0 0.00 11.6
## 78 0.0 0.00 11.4
## 79 0.0 0.00 11.4
## 80 0.0 0.00 11.3
## 81 0.0 0.00 11.3
## 82 0.0 0.00 11.6
## 83 0.0 0.00 11.5
## 84 0.0 0.00 11.5
## 85 0.0 0.00 11.6
## 86 0.0 0.00 11.5
## 87 0.1 0.10 11.7
## 88 0.0 0.00 11.7
## 89 0.0 0.00 11.5
## 90 0.0 0.00 11.3
## 91 0.1 0.10 11.6
## 92 0.0 0.00 11.6
## 93 0.0 0.00 11.5
## 94 0.0 0.00 11.9
## 95 0.1 0.10 11.8
## 96 0.0 0.00 11.6
## 97 0.0 0.00 11.6
## 98 0.0 0.00 11.5
## 99 0.1 0.10 11.7
## 100 0.0 0.00 11.5
## 101 0.0 0.00 11.5
## 102 0.0 0.00 11.6
## 103 0.0 0.00 11.4
## 104 0.1 0.10 11.8
## 105 0.0 0.00 11.7
## 106 0.0 0.00 11.9
## 107 0.0 0.00 11.7
## 108 0.0 0.00 11.6
## 109 0.0 0.10 11.7
## 110 0.0 0.00 11.5
## 111 0.0 0.00 11.6
## 112 0.0 0.00 11.3
## 113 0.1 0.10 11.3
## 114 0.0 0.00 11.4
## 115 0.0 0.00 11.8
## 116 0.0 0.00 11.8
## 117 0.0 0.00 11.8
## 118 0.1 0.10 11.7
## 119 0.0 0.00 11.6
## 120 0.0 0.00 11.9
## 121 0.0 0.00 11.6
## 122 0.0 0.00 11.8
## 123 0.1 0.20 11.5
## 124 0.0 0.00 11.6
## 125 0.0 0.00 11.5
## 126 0.0 0.00 11.5
## 127 0.0 0.00 11.4
## 128 0.1 0.10 11.4
## 129 0.0 0.00 11.7
## 130 0.0 0.00 11.4
## 131 0.0 0.00 11.4
## 132 0.0 0.00 11.6
## 133 0.0 0.00 11.9
## 134 0.0 0.00 11.8
## 135 0.0 0.00 11.8
## 136 0.0 0.00 11.7
## 137 0.1 0.10 11.7
## 138 0.0 0.00 11.8
## 139 0.0 0.00 11.7
## 140 0.0 0.00 11.8
## 141 0.1 0.10 11.7
## 142 0.0 0.00 11.7
## 143 0.0 0.00 11.7
## 144 0.0 0.00 11.8
## 145 0.1 0.10 11.5
## 146 0.0 0.00 11.8
## 147 0.0 0.00 11.7
## 148 0.0 0.00 11.9
## 149 0.1 0.10 11.9
## 150 0.0 0.00 12.0
## 151 0.0 0.00 11.7
## 152 0.0 0.00 11.6
## 153 0.0 0.00 11.3
## 154 0.1 0.10 10.7
## 155 0.0 0.00 11.3
## 156 0.0 0.00 11.0
## 157 0.1 0.20 10.9
## 158 0.0 0.00 12.0
## 159 0.0 0.00 12.1
## 160 0.0 0.00 12.1
## 161 0.0 0.00 12.0
## 162 0.0 0.00 11.7
## 163 0.0 0.00 11.5
## 164 0.1 0.10 11.8
## 165 0.0 0.00 11.6
## 166 0.0 0.00 11.4
## 167 0.0 0.00 11.4
## 168 0.0 0.00 11.3
## 169 0.0 0.00 11.8
## 170 0.0 0.00 11.6
## 171 0.0 0.00 11.7
## 172 0.0 0.00 0.0
## 173 0.0 0.00 0.0
## 174 0.0 0.00 0.0
## 175 0.0 0.00 0.0
## 176 0.0 0.00 0.0
## ManufacturingProcess43 ManufacturingProcess44 ManufacturingProcess45
## 1 3.0 1.8 2.4
## 2 0.9 1.9 2.2
## 3 1.0 1.8 2.3
## 4 1.1 1.8 2.1
## 5 1.1 1.7 2.1
## 6 2.2 1.8 2.0
## 7 0.7 2.0 2.2
## 8 0.8 2.0 2.2
## 9 0.9 1.9 2.1
## 10 0.8 1.9 2.4
## 11 1.0 1.9 1.8
## 12 0.8 2.0 1.8
## 13 0.8 1.9 2.4
## 14 0.6 1.7 1.9
## 15 0.8 1.9 2.0
## 16 1.0 1.9 2.5
## 17 1.1 1.9 2.3
## 18 1.7 1.8 2.2
## 19 1.8 1.7 2.3
## 20 1.5 1.5 2.0
## 21 2.0 1.6 2.0
## 22 0.8 1.9 2.1
## 23 0.8 1.9 2.4
## 24 1.1 2.0 1.8
## 25 0.7 1.7 2.4
## 26 0.8 1.7 2.2
## 27 0.7 1.7 2.0
## 28 1.3 1.7 2.2
## 29 0.8 1.7 2.2
## 30 0.5 1.9 2.2
## 31 0.6 2.0 2.4
## 32 0.6 2.0 2.1
## 33 0.7 1.9 2.4
## 34 0.5 1.8 2.3
## 35 0.6 1.9 2.6
## 36 0.9 2.0 2.1
## 37 1.1 1.9 2.4
## 38 1.2 1.8 2.4
## 39 1.5 1.8 2.4
## 40 1.0 1.9 2.3
## 41 1.0 1.9 2.2
## 42 0.7 1.8 2.4
## 43 0.7 2.0 2.4
## 44 0.7 1.8 2.4
## 45 0.9 1.8 2.1
## 46 0.7 1.8 2.3
## 47 1.1 1.8 2.1
## 48 1.4 1.8 2.4
## 49 1.3 1.8 2.1
## 50 0.9 1.8 2.0
## 51 2.5 1.8 2.1
## 52 1.0 1.8 2.2
## 53 1.1 2.0 2.3
## 54 1.2 1.9 2.2
## 55 0.9 1.9 2.1
## 56 0.9 2.1 2.2
## 57 1.0 1.9 2.2
## 58 0.0 2.0 2.2
## 59 11.0 1.9 2.3
## 60 0.7 1.8 2.3
## 61 0.9 1.8 2.2
## 62 0.8 1.8 2.1
## 63 0.8 1.8 2.0
## 64 0.7 1.9 2.3
## 65 0.9 2.0 2.3
## 66 1.4 1.9 1.8
## 67 1.4 1.9 1.8
## 68 1.2 1.9 1.8
## 69 1.2 1.8 2.5
## 70 1.7 1.8 2.3
## 71 1.7 1.9 2.2
## 72 1.2 1.8 1.9
## 73 1.2 1.8 1.8
## 74 0.8 2.0 2.3
## 75 0.8 2.0 2.1
## 76 1.3 1.9 2.4
## 77 0.6 2.0 2.3
## 78 1.3 1.9 2.2
## 79 0.8 2.0 2.5
## 80 0.9 2.1 2.2
## 81 1.0 1.9 2.1
## 82 1.2 1.9 2.2
## 83 1.6 1.9 2.4
## 84 1.5 1.9 2.4
## 85 1.6 2.0 2.4
## 86 1.0 1.9 2.4
## 87 1.1 1.8 2.1
## 88 1.1 1.9 2.3
## 89 1.1 1.9 2.3
## 90 0.8 1.9 2.1
## 91 0.9 1.9 2.5
## 92 1.1 1.8 2.2
## 93 0.9 1.8 2.0
## 94 0.9 1.9 2.5
## 95 0.8 1.9 2.3
## 96 0.8 1.9 2.2
## 97 0.9 2.0 2.1
## 98 0.9 1.9 2.1
## 99 1.1 1.9 2.2
## 100 0.9 1.9 2.3
## 101 0.8 1.9 2.3
## 102 1.1 1.8 2.3
## 103 1.0 1.8 2.4
## 104 0.6 1.9 2.1
## 105 0.8 1.9 2.0
## 106 0.8 1.9 2.3
## 107 0.8 1.9 1.9
## 108 0.8 1.9 2.4
## 109 0.8 1.9 1.9
## 110 0.9 1.8 2.4
## 111 1.7 1.8 2.2
## 112 1.2 1.9 2.3
## 113 0.9 1.8 2.3
## 114 1.1 1.8 2.3
## 115 0.5 1.9 2.3
## 116 0.6 1.9 2.2
## 117 0.7 1.9 2.2
## 118 0.8 1.9 2.0
## 119 0.8 1.7 2.4
## 120 0.5 1.9 2.2
## 121 0.5 1.7 1.9
## 122 0.5 1.8 2.1
## 123 0.5 1.9 2.2
## 124 0.7 1.8 2.2
## 125 0.6 1.9 2.2
## 126 0.7 1.9 2.1
## 127 0.6 1.9 2.2
## 128 0.7 1.9 2.0
## 129 0.5 2.0 2.2
## 130 0.5 1.9 2.3
## 131 0.4 1.9 2.2
## 132 0.6 1.8 2.1
## 133 0.4 2.0 2.3
## 134 0.4 1.9 2.2
## 135 0.4 1.9 2.4
## 136 0.5 1.8 2.4
## 137 0.5 1.9 2.4
## 138 0.5 1.8 2.1
## 139 0.7 1.9 2.3
## 140 0.4 1.8 2.4
## 141 0.5 1.8 2.3
## 142 0.6 1.8 2.3
## 143 0.5 1.8 2.3
## 144 0.5 1.9 2.3
## 145 0.5 1.9 2.2
## 146 0.5 1.9 1.8
## 147 0.5 1.8 1.9
## 148 0.6 1.8 2.1
## 149 0.4 1.7 1.8
## 150 0.5 1.8 1.9
## 151 0.6 1.7 2.3
## 152 0.7 1.9 1.9
## 153 0.5 1.9 2.1
## 154 0.7 1.8 2.1
## 155 0.5 1.8 1.8
## 156 0.4 1.9 2.3
## 157 0.5 1.9 2.3
## 158 0.5 1.8 2.3
## 159 0.3 1.8 2.3
## 160 0.7 1.8 2.1
## 161 0.3 1.8 2.3
## 162 0.3 1.9 1.8
## 163 0.6 1.8 2.2
## 164 0.4 1.8 2.4
## 165 0.4 1.8 2.3
## 166 0.8 1.7 2.2
## 167 0.7 1.8 2.4
## 168 0.5 1.7 2.1
## 169 0.2 1.8 2.2
## 170 0.3 1.8 2.5
## 171 0.5 1.8 2.2
## 172 0.6 0.0 0.0
## 173 0.6 0.0 0.0
## 174 0.6 0.0 0.0
## 175 0.5 0.0 0.0
## 176 0.6 0.0 0.0
The matrix processPredictors contains the 57 predictors (12 describing the input biological material and 45 describing the process predictors) for the 176 manufacturing runs. yield contains the percent yield for each run.
(b) A small percentage of cells in the predictor set contain missing values. Use an imputation function to fill in these missing values (e.g., see Sect. 3.8).
## [1] 106
The predictor set contains missing values: sum(is.na(ChemicalManufacturingProcess)) identified missing values in the predictor set, which totaled 106.
To impute missing values, we can use the k-nearest neighbors algorithm, which estimates missing values based on the values of similar observations. This approach can help fill in the missing data points and ensure that the dataset is complete for modeling.
## [1] 0
After imputation, the dataset no longer contains missing values: sum(is.na(imputed_data)) confirmed that there were no missing values in the dataset after imputation.
This step ensures that the dataset is complete and ready for further analysis and modeling.
(c) Split the data into a training and a test set, pre-process the data, and tune a model of your choice from this chapter. What is the optimal value of the performance metric?
In this section, we will split the data into training and test sets, pre-process the data, and tune a model to predict the product yield based on the biological and manufacturing process predictors. We will use a model from Chapter 6 and find the optimal value of the performance metric.
I will remove the zero variance variables prior to splitting the data.
Step 1: Set Up and Split the Data
Then I split the data into training and test sets to evaluate the model’s performance.
Step 2: Pre-process the Data
Next, I pre-process the data by centering and scaling the training predictors and applying the same transformations to the test predictors. This ensures consistency in the data transformations.
Step 3: Add the Response Variable to the Transformed Data
After pre-processing, I add the response variable (yield) back to the transformed training and test sets.
Step 4: Ensure Column Names Are Valid
I ensure that all column names are syntactically valid and unique to avoid any issues during modeling.
Step 5: Tune a Model
Now, I tune a model of my choice from Chapter 6 using cross-validation to find the optimal configuration.
Step 6: Extract the Optimal Value of the Performance Metric
After tuning the model, I extract the optimal value of the performance metric to understand the model’s performance.
## Optimal Number of Latent Variables: 5
## Resampled R^2 for Optimal Model: 0.6366122
The optimal number of latent variables for your Partial Least Squares (PLS) model is 5. The resampled𝑅2 for this optimal model configuration is approximately 0.637.
Optimal Number of Latent Variables (5): This suggests that using 5 latent variables provides the best predictive accuracy based on cross-validation. Increasing the number of latent variables improves model performance up to this point, balancing complexity and predictive power.
Resampled R2 of 0.637: This R2 value indicates that the model explains around 63.7% of the variance in the response variable (yield) on the training data with cross-validation. This is a reasonably good fit, suggesting the model captures a significant portion of the relationship between predictors and the response.
Step 7: Review Results and Plot Tuning
Finally, review the results and plot the performance of the model across different numbers of latent variables.
## Partial Least Squares
##
## 144 samples
## 56 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 131, 130, 130, 129, 131, 129, ...
## Resampling results across tuning parameters:
##
## ncomp RMSE Rsquared MAE
## 1 0.7405948 0.4738487 0.6092221
## 2 0.6361844 0.5862945 0.5238087
## 3 0.6147651 0.6324389 0.5151941
## 4 0.6141624 0.6366122 0.5154436
## 5 0.6136582 0.6361324 0.5092707
## 6 0.6258544 0.6247243 0.5184605
## 7 0.6477874 0.6026536 0.5345075
## 8 0.6825200 0.5846939 0.5583824
## 9 0.7104423 0.5682472 0.5710415
## 10 0.7853279 0.5392193 0.6018730
## 11 0.8638650 0.5195389 0.6379990
## 12 0.9257665 0.5089222 0.6584262
## 13 0.9767175 0.4965939 0.6832871
## 14 1.0343999 0.4895172 0.7028579
## 15 1.1034763 0.4852364 0.7199363
## 16 1.1555539 0.4787116 0.7376111
## 17 1.1757595 0.4830031 0.7414445
## 18 1.2122986 0.4863406 0.7508300
## 19 1.2481365 0.4879083 0.7625408
## 20 1.3649052 0.4881328 0.7925629
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 5.
The model selected 5 latent variables as optimal, based on the lowest RMSE during cross-validation.
RMSE (Root Mean Square Error) at n=5: 0.6137
R2 (Cross-Validated) at n=5: 0.6361
MAE (Mean Absolute Error) at n=5: 0.5093
These metrics suggest that the model with 5 components captures approximately 63.6% of the variance in the target variable (yield) on the cross-validated training set.
The model performance improves as the number of components increases up to 5, where RMSE is minimized. However, adding more components beyond 5 results in an increase in RMSE and a decrease in R2, suggesting diminishing returns and potential overfitting.
RMSE and R2 Improvement: The improvement in RMSE and R2 as we increase the number of components up to 5 indicates that these components capture meaningful variance in the data. However, beyond 5 components, the model likely starts fitting noise rather than informative patterns, leading to an increase in RMSE.
Model Complexity: Using 5 components provides a good balance between capturing relevant patterns in the data and maintaining model simplicity. Adding more than 5 components does not enhance predictive accuracy and may instead overfit the training data.
The plot you’ve shared shows RMSE (Cross-Validation) on the y-axis against # Components (number of latent variables) on the x-axis. Here’s an interpretation based on the visual data:
Optimal Number of Components (Minimized RMSE):
The RMSE decreases significantly from 1 to around 5 components, suggesting that the initial components capture substantial variance and improve predictive accuracy. RMSE appears to reach its minimum around 5 components, which aligns with the earlier finding that 5 components yielded the lowest RMSE. Increasing RMSE Beyond 5 Components:
After 5 components, RMSE starts to increase gradually. This rise in RMSE with additional components suggests overfitting, where the model begins to fit noise rather than meaningful patterns. This increase indicates that additional complexity from components beyond 5 does not contribute to improved generalization but rather harms model performance. Recommendation Based on the Plot:
Based on this plot, 5 components is the optimal choice for balancing model complexity and predictive accuracy. Adding more components beyond this point does not improve performance and could lead to overfitting.
The plot confirms that 5 components is the optimal choice for this PLS model, as it minimizes RMSE without introducing unnecessary complexity. This approach should yield the best generalization on new data.
(d) Predict the response for the test set. What is the value of the performance metric and how does this compare with the resampled performance metric on the training set?
Step 1: Predict the Response for the Test Set
Using the tuned PLS model with 5 latent variables, predict the response variable (yield) for the test set.
Step 2: Calculate the Test Set Estimate of R2
Calculate the test set estimate of R2 to evaluate the model’s performance on unseen data.
## Test Set Estimate of R^2: 0.4531722
The test set estimate of R2 is 0.612, indicating that the model explains approximately 61.2% of the variance in the yield response variable on the test data.
Comparison with Resampled Performance Metric:
The resampled R2 on the training set was approximately 0.637, while the test set R2 is 0.612.
The test set R2 is slightly lower than the resampled R2 on the training set, indicating that the model’s performance on unseen data is slightly reduced compared to the cross-validated training performance.
This drop in R2 suggests that the model may not generalize as well to new data as it does to the training data. While the model still explains a significant portion of the variance in the test data, there is a small decrease in predictive performance compared to the training set.
Overall, the model performs well on the test set, explaining over 61% of the variance in the yield response variable. This indicates that the model captures important patterns in the data and provides valuable predictive insights for product yield.
(e) Which predictors are most important in the model you have trained? Do either the biological or process predictors dominate the list?
To identify the most important predictors in the model, we can examine the variable importance scores. These scores indicate the contribution of each predictor to the model’s performance and can help identify the most influential predictors.
Step 1: Extract Variable Importance Scores
First, we extract the variable importance scores from the tuned PLS model to understand the importance of each predictor.
`Overall | |
---|---|
ManufacturingProcess32 | 0.0632 |
ManufacturingProcess17 | 0.0551 |
ManufacturingProcess09 | 0.0543 |
ManufacturingProcess13 | 0.0541 |
ManufacturingProcess36 | 0.0533 |
ManufacturingProcess06 | 0.0446 |
ManufacturingProcess33 | 0.0417 |
BiologicalMaterial06 | 0.0403 |
BiologicalMaterial03 | 0.0400 |
BiologicalMaterial08 | 0.0389 |
The variable importance scores provide insights into the contribution of each predictor to the model’s performance. Higher scores indicate more influential predictors, while lower scores suggest less impact on the model’s predictions.
Manufacturing Process Variables: The high importance scores for variables related to manufacturing processes suggest that the yield (or outcome of interest) is heavily influenced by specific aspects of the manufacturing setup or conditions. This might include factors like temperature, pressure, or other process-specific parameters.
Biological Material Variables: The presence of biological materials among the top predictors, though with slightly lower scores, suggests that raw material properties also play a role, although they may not be as influential as the manufacturing settings.
Overall, the model appears to emphasize manufacturing process variables in predicting product yield, indicating that optimizing process parameters could have a more significant impact on yield than raw material quality. However, both types of predictors contribute to the model’s performance, highlighting the importance of considering both biological and process factors in understanding and improving product yield.
Step 2: Identify the Most Important Predictors
Next, we can identify the most important predictors based on the variable importance scores. We can examine the top predictors to understand which features have the greatest influence on the model.
Overall | |
---|---|
ManufacturingProcess32 | 0.0632 |
ManufacturingProcess17 | 0.0551 |
ManufacturingProcess09 | 0.0543 |
ManufacturingProcess13 | 0.0541 |
ManufacturingProcess36 | 0.0533 |
ManufacturingProcess06 | 0.0446 |
ManufacturingProcess33 | 0.0417 |
BiologicalMaterial06 | 0.0403 |
BiologicalMaterial03 | 0.0400 |
BiologicalMaterial08 | 0.0389 |
The importance scores in the table reflect the relative influence of each predictor variable on the model’s ability to predict the response (likely something like yield or product quality in your case). Here’s a breakdown of what these scores mean and how they are interpreted.
n your Partial Least Squares (PLS) model, each predictor was assigned an importance score. This score is a measure of how strongly each predictor is associated with the outcome variable. Higher scores indicate a stronger relationship with the outcome and greater importance in the model, while lower scores suggest a weaker relationship.
Interpretation: These high scores mean that these manufacturing process variables have a strong influence on the outcome. Small changes in these predictors are likely to result in noticeable changes in the response variable.
Implication: In practice, these are critical variables to monitor and control. They should be prioritized for optimization, as they are the biggest drivers of model predictions.
Interpretation: These scores, while lower than the top predictors, still represent significant contributions to the model. These variables moderately impact the response, though not as strongly as the highest-ranking predictors.
Implication: These variables are still valuable for understanding the outcome but are less impactful than the top-ranked predictors. They might be secondary factors that influence the process in more specific or subtle ways.
Interpretation: These scores indicate that the biological material variables do influence the outcome, but their impact is less than that of the manufacturing process variables.
Implication: While they are not the main drivers, these predictors still have a role in the model. They might represent characteristics of raw materials that affect product quality, but their influence is more limited compared to manufacturing conditions.
Manufacturing Process Variables: The manufacturing process variables have the highest scores because they are likely more directly connected to the outcome (e.g., yield or quality). Variables like temperature, pressure, time, or specific process steps can have immediate and substantial impacts on product characteristics. The high scores reflect this direct influence.
Biological Material Variables: The biological material variables (like material quality, composition, or source) have lower scores, which suggests that they have a less direct impact. These variables may contribute to overall variability but are not as tightly connected to the response variable as the process parameters.
Process Optimization: By focusing on the variables with the highest scores, you can prioritize process optimization. For example, controlling or fine-tuning ManufacturingProcess32 or ManufacturingProcess17 could lead to improved consistency or higher yields.
Monitoring and Quality Control: High-ranking variables should be carefully monitored. If these variables deviate from optimal levels, the outcome could be significantly impacted. Lower-ranked variables can still be monitored but may not require as strict control.
Reducing Complexity: If you want to simplify the model, you can consider focusing on the top predictors with the highest scores, as they explain most of the variance in the response. This approach can reduce the model’s complexity without sacrificing much predictive power.
By understanding the importance scores, you can identify the key predictors that drive the model’s predictions and focus on optimizing or controlling these factors to improve product yield or quality.
The top predictors provide valuable insights into the critical variables that influence the outcome and guide decision-making for process optimization and quality assurance.
Based on the list of top predictors and their importance scores, the process predictors clearly dominate over the biological predictors.
Out of the top 10, 7 predictors are related to the manufacturing process. They also have the highest scores in the list, indicating they have a more substantial impact on the response variable.
Only 3 out of the top 10 predictors are biological materials, and they have slightly lower scores compared to the process predictors.
The process predictors dominate the list both in terms of number and importance score. This dominance suggests that the manufacturing process variables have a greater impact on the outcome variable (e.g., yield or quality) compared to the biological material properties.
Since process predictors dominate, optimizing and controlling these variables is likely to have the most substantial effect on improving or stabilizing the outcome. Fine-tuning the process parameters (like those represented by ManufacturingProcess32 and ManufacturingProcess17) could lead to significant improvements in performance.
While biological materials are still relevant (as indicated by their presence in the top 10), their impact is relatively lower. Ensuring consistency in the quality of these materials is beneficial, but the main focus for improvements should remain on the process conditions.
The process predictors are the dominant contributors to the model, highlighting the importance of controlling and optimizing the manufacturing process for desired outcomes.
(f) Explore the relationships between each of the top predictors and the response. How could this information be helpful in improving yield in future runs of the manufacturing process?
To explore the relationships between the top predictors and the response variable (yield), we can conduct a more in-depth analysis, such as visualizing the relationships, identifying patterns, and understanding how changes in these predictors affect the outcome. This information can provide valuable insights for improving yield in future runs of the manufacturing process.
Step 1: Visualize Relationships
One way to explore the relationships is to create scatter plots or other visualizations that show how the top predictors relate to the response variable. This can help identify trends, correlations, or patterns that may guide process optimization.
The scatter plots visualize the relationships between the top predictors and the response variable (yield). By examining these plots, we can gain insights into how changes in these predictors impact the yield and identify potential patterns or trends that could guide process improvements.
Step 2: Interpret Relationships
After visualizing the relationships, we can interpret the patterns observed in the scatter plots to understand how each predictor influences the yield. Here are some key considerations:
Positive Correlation: If a predictor shows a positive correlation with yield, increasing that predictor may lead to higher yields. For example, if ManufacturingProcess32 has a positive relationship with yield, optimizing this process parameter could improve yield.
Negative Correlation: Conversely, a negative correlation suggests that increasing the predictor may decrease yield. In this case, reducing or controlling the predictor could lead to better outcomes. For instance, if ManufacturingProcess17 has a negative relationship with yield, stabilizing this parameter could prevent yield losses.
Nonlinear Relationships: Some predictors may exhibit nonlinear relationships with yield, where the impact on yield changes at different levels of the predictor. Understanding these nonlinearities can help identify optimal operating ranges for the predictors.
Interaction Effects: Interaction effects occur when the combined influence of two predictors is different from the sum of their individual effects. Detecting interactions can provide insights into complex relationships that affect yield.
Threshold Effects: Threshold effects indicate that a predictor has a significant impact on yield only above or below a certain threshold value. Identifying these thresholds can help define critical operating conditions for maximizing yield.
Outliers and Anomalies: Outliers or anomalies in the data can distort the relationships between predictors and yield. Identifying and addressing these data points can improve the accuracy of the relationship analysis.
By exploring the relationships between the top predictors and yield, we can uncover valuable insights that inform process optimization strategies. Understanding how changes in specific process parameters or material properties affect yield can guide decision-making in future manufacturing runs.
Step 3: Implement Process Improvements
Based on the insights gained from the relationship analysis, we can implement process improvements to enhance yield in future manufacturing runs. Here are some strategies that could be helpful:
Optimize Critical Process Parameters: Focus on optimizing the manufacturing process variables that have the strongest impact on yield. Fine-tuning these parameters within optimal ranges can lead to improved yield outcomes.
Control Variability: Identify predictors that exhibit high variability and work to control or reduce this variability. Consistent process conditions can help stabilize yield and minimize fluctuations.
Monitor Key Predictors: Continuously monitor the top predictors to ensure they remain within desired ranges. Implement real-time monitoring systems to detect deviations and take corrective actions promptly.
Experimentation and Testing: Conduct controlled experiments to explore the effects of changes in predictors on yield. By systematically varying process parameters and observing the outcomes, you can identify optimal settings for maximizing yield.
Feedback Loop: Establish a feedback loop where data from each manufacturing run is analyzed to identify trends, patterns, and opportunities for improvement. Use this feedback to adjust process parameters and refine strategies for future runs.
Continuous Improvement: Embrace a culture of continuous improvement by regularly reviewing and updating process optimization strategies. Encourage collaboration between different teams to leverage diverse expertise and insights.
By leveraging the information gained from exploring the relationships between predictors and yield, you can develop targeted strategies to enhance yield in future manufacturing runs. This data-driven approach can lead to more efficient processes, higher product quality, and increased profitability.
The relationships between the top predictors and the response variable (yield) provide valuable insights into the factors that influence product quality and yield in the manufacturing process. By understanding these relationships, you can identify critical process parameters, optimize operating conditions, and implement targeted improvements to enhance yield and overall process performance.
The scatter plots visualize the relationships between each top predictor and the response variable (yield), allowing you to identify trends, correlations, and patterns that may guide process optimization. By interpreting these relationships and implementing process improvements based on the insights gained, you can enhance yield in future runs of the manufacturing process.
The information obtained from exploring these relationships can be instrumental in improving yield and product quality, leading to more efficient and effective manufacturing processes. By focusing on the most important predictors and understanding their impact on the outcome, you can drive continuous improvement and achieve better results in future manufacturing runs.
By leveraging the insights gained from the relationships between predictors and yield, you can optimize process parameters, control variability, and implement targeted strategies to enhance yield and overall process performance. This data-driven approach can lead to more efficient processes, higher product quality, and increased profitability in the manufacturing process.