MAIN
EFFECTS OF OCEAN ON X AND Y
# 1. Model Specification
IV <- gsub("Y ON X;", "Y ON O C EX A ES;", IV.S)
IV <- mplus2lavaan.modelSyntax(IV)
cat(IV)
## X ~ O + C + EX + A + ES
## Y ~ O + C + EX + A + ES
## Y ~~ X
## O ~~ C + EX + A + ES
## C ~~ EX + A + ES
## EX ~~ A + ES
## A ~~ ES
# 1.2 model fit
IV.cenA <- sem(IV,sample.cov = P,sample.nobs = Nhar)#xxx
lavaan_summary(IV.cenA)
##
## Fit Measures (lavaan):
## χ²(0, N = 475) = 0.000, p = 1.000
## χ²/df = Inf (saturated model)
## AIC = 9219.285 (Akaike Information Criterion)
## BIC = 9335.857 (Bayesian Information Criterion)
## CFI = 1.000 (Comparative Fit Index)
## TLI = 1.000 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 1.000 (Normed Fit Index)
## IFI = 1.000 (Incremental Fit Index)
## GFI = 1.000 (Goodness-of-Fit Index)
## AGFI = 1.000 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.000, 90% CI [0.000, 0.000] (Root Mean Square Error of Approximation)
## SRMR = 0.000 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ────────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ────────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- O -0.071 (0.046) -1.533 .125 -0.161 0.020 -0.071
## X <- C 0.132 (0.047) 2.820 .005 ** 0.040 0.224 0.132
## X <- EX 0.130 (0.048) 2.742 .006 ** 0.037 0.223 0.130
## X <- A 0.052 (0.047) 1.108 .268 -0.040 0.143 0.052
## X <- ES 0.172 (0.046) 3.742 <.001 *** 0.082 0.263 0.172
## Y <- O -0.013 (0.047) -0.283 .777 -0.106 0.079 -0.013
## Y <- C 0.172 (0.048) 3.609 <.001 *** 0.079 0.266 0.172
## Y <- EX 0.119 (0.048) 2.459 .014 * 0.024 0.214 0.119
## Y <- A 0.059 (0.047) 1.235 .217 -0.034 0.152 0.059
## Y <- ES 0.001 (0.047) 0.020 .984 -0.091 0.093 0.001
## ────────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# Plot
lavaanPlot(model = IV.cenA, coefs = T, sig = 0.05)
OVERALL RESULTS
IVs
are OCEAN
# 1. Model Specification
IV.ocean <- IVb
cat(IV.ocean)
## X ~ O + C + EX + A + ES
## Y ~ X
## Y ~~ X
## O ~~ C + EX + A + ES
## C ~~ EX + A + ES
## EX ~~ A + ES
## A ~~ ES
# 1.2 model fit
IV.oceanA <- sem(IV.ocean,sample.cov = P,sample.nobs = Nhar)#xxx
lavaan_summary(IV.oceanA)
##
## Fit Measures (lavaan):
## χ²(4, N = 475) = 7.538, p = 0.110
## χ²/df = 1.885
## AIC = 9218.823 (Akaike Information Criterion)
## BIC = 9318.742 (Bayesian Information Criterion)
## CFI = 0.986 (Comparative Fit Index)
## TLI = 0.924 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 0.972 (Normed Fit Index)
## IFI = 0.986 (Incremental Fit Index)
## GFI = 0.996 (Goodness-of-Fit Index)
## AGFI = 0.969 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.043, 90% CI [0.000, 0.090] (Root Mean Square Error of Approximation)
## SRMR = 0.020 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ────────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ────────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- O -0.053 (0.040) -1.348 .178 -0.131 0.024 -0.053
## X <- C 0.164 (0.042) 3.937 <.001 *** 0.083 0.246 0.164
## X <- EX 0.140 (0.042) 3.343 <.001 *** 0.058 0.222 0.140
## X <- A 0.060 (0.040) 1.512 .130 -0.018 0.139 0.060
## X <- ES 0.116 (0.040) 2.884 .004 ** 0.037 0.195 0.116
## Y <- X 0.749 (0.170) 4.416 <.001 *** 0.416 1.081 0.749
## ────────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# 2.1. Wald
variables <- c("ES", "A", "C", "EX", "O")
par.names <- paste0('X~',variables)
Wald.test(fit=IV.oceanA,par.names,method='UIMASEM')%>%setDT()%>%print_table()
## ─────────────────────────────
## Wald.Statistic Wald.pValue
## ─────────────────────────────
## 1 49.624 0.000
## ─────────────────────────────
# 2.3. R2
R2xzw.MASEM(P = P,method = 'UIMASEM',y.nm='Y',X.nm='X',Z.nm=variables)
## $R2x.z
## [,1]
## [1,] 0.09853
# 3. X->Y
lavaanPlot(model = IV.oceanA, coefs = T, sig = 0.05)
Test for excluding the unqualified IVs
# 1. Model Specification
IV <- gsub("X ON O C EX A ES;", "X ON C EX ES;", IV.S)
IV <- mplus2lavaan.modelSyntax(IV)
cat(IV)
## X ~ C + EX + ES
## Y ~ X
## Y ~~ X
## O ~~ C + EX + A + ES
## C ~~ EX + A + ES
## EX ~~ A + ES
## A ~~ ES
# 1.2 model fit
IV.cenA <- sem(IV,sample.cov = P,sample.nobs = Nhar)#xxx
lavaan_summary(IV.cenA)
##
## Fit Measures (lavaan):
## χ²(6, N = 475) = 11.237, p = 0.081 .
## χ²/df = 1.873
## AIC = 9218.522 (Akaike Information Criterion)
## BIC = 9310.115 (Bayesian Information Criterion)
## CFI = 0.979 (Comparative Fit Index)
## TLI = 0.925 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 0.958 (Normed Fit Index)
## IFI = 0.980 (Incremental Fit Index)
## GFI = 0.993 (Goodness-of-Fit Index)
## AGFI = 0.969 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.043, 90% CI [0.000, 0.081] (Root Mean Square Error of Approximation)
## SRMR = 0.025 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ─────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ─────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- C 0.173 (0.041) 4.238 <.001 *** 0.093 0.253 0.173
## X <- EX 0.133 (0.040) 3.308 <.001 *** 0.054 0.212 0.133
## X <- ES 0.120 (0.040) 2.991 .003 ** 0.042 0.199 0.120
## Y <- X 0.757 (0.176) 4.312 <.001 *** 0.413 1.102 0.757
## ─────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# 2.1. Wald
variables <- c("ES", "C", "EX")
par.names <- paste0('X~',variables)
Wald.test(fit=IV.cenA,par.names,method='UIMASEM')%>%setDT()%>%print_table()
## ─────────────────────────────
## Wald.Statistic Wald.pValue
## ─────────────────────────────
## 1 46.275 0.000
## ─────────────────────────────
# 2.3. R2
R2xzw.MASEM(P = P,method = 'UIMASEM',y.nm='Y',X.nm='X',Z.nm=variables)
## $R2x.z
## [,1]
## [1,] 0.09242
# 3. X->Y
lavaanPlot(model = IV.cenA, coefs = T, sig = 0.05)
IV.Af <- SEM.FitCombine(list(IV.oceanA,IV.cenA), Mplus = F)#xxx
## SEM Model fit results
## ──────────────────────────────────────────────────────────────────────────────────────
## Model ChiSqM_Value ChiSqM_DF ChiSqM_PValue CFI SRMR ChiSq_Diff DF_Diff ChiSq_p
## ──────────────────────────────────────────────────────────────────────────────────────
## 1 Model 1 7.538 4.000 0.110 0.986 0.020
## 2 Model 2 11.237 6.000 0.081 0.979 0.025 3.699 2.000 0.157
## ──────────────────────────────────────────────────────────────────────────────────────
#result[[2]][, Disgin := "Longitudinal design"]
IVs
are CEN
# 1. Model Specification
IV <- gsub("X ON O C EX A ES;", "X ON C EX ES;", IV.S)
IV <- gsub("O WITH C EX A ES;", "", IV)
IV <- gsub("C WITH EX A ES;", "C WITH EX ES;", IV)
IV <- gsub("EX WITH A ES;", "EX WITH ES;", IV)
IV <- gsub("A WITH ES;", "", IV)
IV <- mplus2lavaan.modelSyntax(IV)
cat(IV)
## X ~ C + EX + ES
## Y ~ X
## Y ~~ X
## C ~~ EX + ES
## EX ~~ ES
# 1.2 model fit
IV.A <- sem(IV,sample.cov = P,sample.nobs = Nhar)
lavaan_summary(IV.A)
##
## Fit Measures (lavaan):
## χ²(2, N = 475) = 6.809, p = 0.033 *
## χ²/df = 3.405
## AIC = 6616.660 (Akaike Information Criterion)
## BIC = 6670.783 (Bayesian Information Criterion)
## CFI = 0.966 (Comparative Fit Index)
## TLI = 0.830 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 0.955 (Normed Fit Index)
## IFI = 0.968 (Incremental Fit Index)
## GFI = 0.994 (Goodness-of-Fit Index)
## AGFI = 0.958 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.071, 90% CI [0.017, 0.133] (Root Mean Square Error of Approximation)
## SRMR = 0.024 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ─────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ─────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- C 0.173 (0.041) 4.238 <.001 *** 0.093 0.253 0.173
## X <- EX 0.133 (0.040) 3.308 <.001 *** 0.054 0.212 0.133
## X <- ES 0.120 (0.040) 2.991 .003 ** 0.042 0.199 0.120
## Y <- X 0.757 (0.176) 4.312 <.001 *** 0.413 1.102 0.757
## ─────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# 2.1. Wald
variables <- c("ES", "C", "EX")
par.names <- paste0('X~',variables)
Wald.test(fit=IV.A,par.names,method='UIMASEM')%>%setDT()%>%print_table()
## ─────────────────────────────
## Wald.Statistic Wald.pValue
## ─────────────────────────────
## 1 46.275 0.000
## ─────────────────────────────
# 2.3. R2
R2xzw.MASEM(P = P,method = 'UIMASEM',y.nm='Y',X.nm='X',Z.nm=variables)
## $R2x.z
## [,1]
## [1,] 0.09242
# 3. X->Y
lavaanPlot(model = IV.A, coefs = T, sig = 0.05)
IVs
are EN with Y on C
# 1. Model Specification
IV <- gsub("X ON O C EX A ES;", "X ON C EX ES;", IV.S)
IV <- gsub("Y ON X;", "Y ON X C;", IV)
IV <- gsub("O WITH C EX A ES;", "", IV)
IV <- gsub("C WITH EX A ES;", "C WITH EX ES;", IV)
IV <- gsub("EX WITH A ES;", "EX WITH ES;", IV)
IV <- gsub("A WITH ES;", "", IV)
IV <- mplus2lavaan.modelSyntax(IV)
cat(IV)
## X ~ C + EX + ES
## Y ~ X + C
## Y ~~ X
## C ~~ EX + ES
## EX ~~ ES
# 1.2 model fit
IV.Ac <- sem(IV,sample.cov = P,sample.nobs = Nhar)
lavaan_summary(IV.Ac)
##
## Fit Measures (lavaan):
## χ²(1, N = 475) = 3.598, p = 0.058 .
## χ²/df = 3.598
## AIC = 6615.449 (Akaike Information Criterion)
## BIC = 6673.735 (Bayesian Information Criterion)
## CFI = 0.982 (Comparative Fit Index)
## TLI = 0.816 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 0.976 (Normed Fit Index)
## IFI = 0.983 (Incremental Fit Index)
## GFI = 0.997 (Goodness-of-Fit Index)
## AGFI = 0.955 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.074, 90% CI [0.000, 0.163] (Root Mean Square Error of Approximation)
## SRMR = 0.018 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ─────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ─────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- C 0.137 (0.045) 3.022 .003 ** 0.048 0.226 0.137
## X <- EX 0.137 (0.045) 3.074 .002 ** 0.050 0.224 0.137
## X <- ES 0.160 (0.045) 3.547 <.001 *** 0.072 0.249 0.160
## Y <- X 0.415 (0.202) 2.053 .040 * 0.019 0.811 0.415
## Y <- C 0.127 (0.061) 2.074 .038 * 0.007 0.247 0.127
## ─────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# 2.1. Wald
variables <- c("ES", "C", "EX")
par.names <- paste0('X~',variables)
Wald.test(fit=IV.Ac,par.names,method='UIMASEM')%>%setDT()%>%print_table()
## ─────────────────────────────
## Wald.Statistic Wald.pValue
## ─────────────────────────────
## 1 48.077 0.000
## ─────────────────────────────
# 2.3. R2
R2xzw.MASEM(P = P,method = 'UIMASEM',y.nm='Y',X.nm='X',Z.nm=variables)
## $R2x.z
## [,1]
## [1,] 0.09242
# 3. X->Y
lavaanPlot(model = IV.Ac, coefs = T, sig = 0.05)
IV.Acenf <- SEM.FitCombine(list(IV.Ac,IV.A), Mplus = F)#xxx
## SEM Model fit results
## ──────────────────────────────────────────────────────────────────────────────────────
## Model ChiSqM_Value ChiSqM_DF ChiSqM_PValue CFI SRMR ChiSq_Diff DF_Diff ChiSq_p
## ──────────────────────────────────────────────────────────────────────────────────────
## 1 Model 1 3.598 1.000 0.058 0.982 0.018
## 2 Model 2 6.809 2.000 0.033 0.966 0.024 3.211 1.000 0.073
## ──────────────────────────────────────────────────────────────────────────────────────
IVs
are EN
# 1. Model Specification
IV <- gsub("X ON O C EX A ES;", "X ON EX ES;", IV.S)
IV <- gsub("O WITH C EX A ES;", "", IV)
IV <- gsub("C WITH EX A ES;", "", IV)
IV <- gsub("EX WITH A ES;", "EX WITH ES;", IV)
IV <- gsub("A WITH ES;", "", IV)
IV <- mplus2lavaan.modelSyntax(IV)
cat(IV)
## X ~ EX + ES
## Y ~ X
## Y ~~ X
## EX ~~ ES
# 1.2 model fit
IV.A2 <- sem(IV,sample.cov = P,sample.nobs = Nhar)
lavaan_summary(IV.A2)
##
## Fit Measures (lavaan):
## χ²(1, N = 475) = 3.371, p = 0.066 .
## χ²/df = 3.371
## AIC = 5315.205 (Akaike Information Criterion)
## BIC = 5352.675 (Bayesian Information Criterion)
## CFI = 0.973 (Comparative Fit Index)
## TLI = 0.839 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
## NFI = 0.964 (Normed Fit Index)
## IFI = 0.975 (Incremental Fit Index)
## GFI = 0.996 (Goodness-of-Fit Index)
## AGFI = 0.965 (Adjusted Goodness-of-Fit Index)
## RMSEA = 0.071, 90% CI [0.000, 0.160] (Root Mean Square Error of Approximation)
## SRMR = 0.021 (Standardized Root Mean Square Residual)
##
## Model Estimates (lavaan):
## ─────────────────────────────────────────────────────────────────────
## Estimate S.E. z p LLCI ULCI Beta
## ─────────────────────────────────────────────────────────────────────
## Regression Paths:
## X <- EX 0.162 (0.044) 3.700 <.001 *** 0.076 0.247 0.162
## X <- ES 0.181 (0.044) 4.125 <.001 *** 0.095 0.267 0.181
## Y <- X 0.544 (0.177) 3.079 .002 ** 0.198 0.890 0.544
## ─────────────────────────────────────────────────────────────────────
## Note. Raw (Standard) Confidence Interval (CI) and SE.
# 2.1. Wald
variables <- c("ES", "EX")
par.names <- paste0('X~',variables)
Wald.test(fit=IV.A2,par.names,method='UIMASEM')%>%setDT()%>%print_table()
## ─────────────────────────────
## Wald.Statistic Wald.pValue
## ─────────────────────────────
## 1 38.076 0.000
## ─────────────────────────────
# 2.3. R2
R2xzw.MASEM(P = P,method = 'UIMASEM',y.nm='Y',X.nm='X',Z.nm=variables)
## $R2x.z
## [,1]
## [1,] 0.07506
# 3. X->Y
lavaanPlot(model = IV.A2, coefs = T, sig = 0.05)
IV.A2f <- SEM.FitCombine(list(IV.A2,IV.A2), Mplus = F)#xxx
## SEM Model fit results
## ──────────────────────────────────────────────────────────────────────────────────────
## Model ChiSqM_Value ChiSqM_DF ChiSqM_PValue CFI SRMR ChiSq_Diff DF_Diff ChiSq_p
## ──────────────────────────────────────────────────────────────────────────────────────
## 1 Model 1 3.371 1.000 0.066 0.973 0.021
## 2 Model 2 3.371 1.000 0.066 0.973 0.021 0.000 0.000 1.000
## ──────────────────────────────────────────────────────────────────────────────────────
IV.A2f2=IV.A2f[[2]][Model!="Model 2",]
RESULTS SUMMARY
Summary.fit <- rbindlist(list(IV.Af[[2]], IV.Acenf[[2]],IV.A2f2), use.names = TRUE)
Summary.fit$Model[1:5] <- c(
"M1. OCEAN as IVs",
"M2. CEN as IVs with OA retained",
"M4. EN as IVs with the effect of C on Y",
"M3. CEN as IVs with OA removed",
"M5. EN as IVs with OA removed"
)
print_table(Summary.fit[order(Summary.fit$Model), ])
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Model ChiSqM_Value ChiSqM_DF ChiSqM_PValue CFI SRMR ChiSq_Diff DF_Diff ChiSq_p
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## 1 M1. OCEAN as IVs 7.538 4.000 0.110 0.986 0.020
## 2 M2. CEN as IVs with OA retained 11.237 6.000 0.081 0.979 0.025 3.699 2.000 0.157
## 3 M3. CEN as IVs with OA removed 6.809 2.000 0.033 0.966 0.024 3.211 1.000 0.073
## 4 M4. EN as IVs with the effect of C on Y 3.598 1.000 0.058 0.982 0.018
## 5 M5. EN as IVs with OA removed 3.371 1.000 0.066 0.973 0.021
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#Fit <- SEM.FitCombine(model_list, Mplus = F)#,title = "")
combined_results <- SEM.PathCombine(list(IV.oceanA,IV.cenA,IV.A,IV.Ac,IV.A2), title = "Combined SEM Path Results", ShortTable = T, EffectOnly = F)
## Combined SEM Path Results
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## label M1.est_sig M1.se M2.est_sig M2.se M3.est_sig M3.se M4.est_sig M4.se M5.est_sig M5.se
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
## 1 A.WITH.ES 0.160*** 0.046 NA NA NA NA
## 2 C.WITH.A 0.289*** 0.048 0.289*** 0.048 NA NA NA
## 3 C.WITH.ES 0.230*** 0.047 0.230*** 0.047 0.230*** 0.047 0.230*** 0.047 NA
## 4 C.WITH.EX 0.190*** 0.047 0.190*** 0.047 0.190*** 0.047 0.190*** 0.047 NA
## 5 C.WITH.O NA 0.160*** 0.046 NA NA NA
## 6 ES.WITH.A NA 0.160*** 0.046 NA NA NA
## 7 ES.WITH.O NA 0.070 0.046 NA NA NA
## 8 EX.WITH.A 0.200*** 0.047 0.200*** 0.047 NA NA NA
## 9 EX.WITH.ES 0.259*** 0.047 0.259*** 0.047 0.259*** 0.047 0.259*** 0.047 0.259*** 0.047
## 10 EX.WITH.O NA 0.289*** 0.048 NA NA NA
## 11 O.WITH.A 0.190*** 0.047 0.190*** 0.047 NA NA NA
## 12 O.WITH.C 0.160*** 0.046 NA NA NA NA
## 13 O.WITH.ES 0.070 0.046 NA NA NA NA
## 14 O.WITH.EX 0.289*** 0.048 NA NA NA NA
## 15 Variances.A 0.998*** 0.065 0.998*** 0.065 NA NA NA
## 16 Variances.C 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 NA
## 17 Variances.ES 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065
## 18 Variances.EX 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065 0.998*** 0.065
## 19 Variances.O 0.998*** 0.065 0.998*** 0.065 NA NA NA
## 20 Variances.X 0.904*** 0.059 0.909*** 0.059 0.909*** 0.059 0.906*** 0.059 0.924*** 0.060
## 21 Variances.Y 1.288*** 0.210 1.298*** 0.219 1.298*** 0.219 1.005*** 0.124 1.098*** 0.147
## 22 X.ON.A 0.060 0.040 NA NA NA NA
## 23 X.ON.C 0.164*** 0.042 0.173*** 0.041 0.173*** 0.041 0.137** 0.045 NA
## 24 X.ON.ES 0.116** 0.040 0.120** 0.040 0.120** 0.040 0.160*** 0.045 0.181*** 0.044
## 25 X.ON.EX 0.140*** 0.042 0.133*** 0.040 0.133*** 0.040 0.137** 0.045 0.162*** 0.044
## 26 X.ON.O -0.053 0.040 NA NA NA NA
## 27 X.WITH.Y -0.567*** 0.163 -0.576*** 0.169 -0.576*** 0.169 -0.260 0.189 -0.363* 0.170
## 28 Y.ON.C NA NA NA 0.127* 0.061 NA
## 29 Y.ON.X 0.749*** 0.170 0.757*** 0.176 0.757*** 0.176 0.415* 0.202 0.544** 0.177
## ─────────────────────────────────────────────────────────────────────────────────────────────────────
combined_results[!grepl("Variances\\.", label)]%>%
.[15:nrow(.), ]%>%
print_table()
## ────────────────────────────────────────────────────────────────────────────────────────────────
## label M1.est_sig M1.se M2.est_sig M2.se M3.est_sig M3.se M4.est_sig M4.se M5.est_sig M5.se
## ────────────────────────────────────────────────────────────────────────────────────────────────
## 1 X.ON.A 0.060 0.040 NA NA NA NA
## 2 X.ON.C 0.164*** 0.042 0.173*** 0.041 0.173*** 0.041 0.137** 0.045 NA
## 3 X.ON.ES 0.116** 0.040 0.120** 0.040 0.120** 0.040 0.160*** 0.045 0.181*** 0.044
## 4 X.ON.EX 0.140*** 0.042 0.133*** 0.040 0.133*** 0.040 0.137** 0.045 0.162*** 0.044
## 5 X.ON.O -0.053 0.040 NA NA NA NA
## 6 X.WITH.Y -0.567*** 0.163 -0.576*** 0.169 -0.576*** 0.169 -0.260 0.189 -0.363* 0.170
## 7 Y.ON.C NA NA NA 0.127* 0.061 NA
## 8 Y.ON.X 0.749*** 0.170 0.757*** 0.176 0.757*** 0.176 0.415* 0.202 0.544** 0.177
## ────────────────────────────────────────────────────────────────────────────────────────────────