Cargue el Arhchivo en formato .DTA

library(haven)
Data = read_dta("D:/Descargas/pwt91 82 paises v14 PD.dta")

Visualiza las variables a trabajar

print(n=10, Data)
## # A tibble: 664 × 72
##      dum abr      id countrycode country currency_unit  year  rgdpe  rgdpo   pop
##    <dbl> <chr> <dbl> <chr>       <chr>   <chr>         <dbl>  <dbl>  <dbl> <dbl>
##  1     1 Aus       5 AUS         Austra… Australian D…  1950 113607 103014  8.39
##  2     1 Aus       5 AUS         Austra… Australian D…  1960 150407 149499 10.5 
##  3     1 Aus       5 AUS         Austra… Australian D…  1961 154037 153787 10.8 
##  4     1 Aus       5 AUS         Austra… Australian D…  1962 163222 162300 11.0 
##  5     1 Aus       5 AUS         Austra… Australian D…  1963 177064 173808 11.2 
##  6     1 Aus       5 AUS         Austra… Australian D…  1964 185150 182567 11.4 
##  7     1 Aus       5 AUS         Austra… Australian D…  1965 187981 184847 11.6 
##  8     1 Aus       5 AUS         Austra… Australian D…  1966 200533 197652 11.8 
##  9     1 Aus       5 AUS         Austra… Australian D…  1967 208644 206638 12.0 
## 10     1 Aus       5 AUS         Austra… Australian D…  1968 225679 222428 12.3 
## # ℹ 654 more rows
## # ℹ 62 more variables: emp <dbl>, avh <dbl>, hc <dbl>, ccon <dbl>, cda <dbl>,
## #   cgdpe <dbl>, cgdpo <dbl>, cn <dbl>, ck <dbl>, ctfp <dbl>, cwtfp <dbl>,
## #   rgdpna <dbl>, rconna <dbl>, rdana <dbl>, rnna <dbl>, rkna <dbl>,
## #   rtfpna <dbl>, rwtfpna <dbl>, labsh <dbl>, irr <dbl>, delta <dbl>, xr <dbl>,
## #   pl_con <dbl>, pl_da <dbl>, pl_gdpo <dbl>, i_cig <chr>, i_xm <chr>,
## #   i_xr <chr>, i_outlier <chr>, i_irr <chr>, cor_exp <dbl>, statcap <dbl>, …
head(Data$kl) ## Composición de capital (logaritmica)
## [1]  98955.13 125552.80 128757.90 130660.90 132042.40 133552.60
head(Data$tp) ## Tasa de plusvalia (logartimica)
## [1] 0.4695250 0.4581107 0.4694602 0.4911219 0.5112565 0.4965848

Desarrolla la estetica de la grafica con ggplot.

p = ggplot(Data, aes(x = kl, y = tp, size = pop, colour = country)) + geom_point(show.legend = FALSE, alpha = 0.7) +
  scale_color_viridis_d() + scale_size(range = c(2, 15)) + labs(x = "(K/L)", y = "tasa de plusvalía") +
  theme(plot.title = element_text(color = "black", size = 16, face = "bold.italic"), axis.title.x = element_text(color = "black", size = 16, face = "bold"), axis.title.y = element_text(color = "black", size = 16, face = "bold"))

Graficar de forma dinamica

animacion_plot = p +
  transition_time(year) +
  labs(title = "Dispersión TP y K/L. 82 países. 1950-2017. PWT 9.1. Year: {frame_time}") +
  shadow_wake(wake_length = 0.8, alpha = TRUE)
animate(animacion_plot)

Grafiquemos por pais, como por ejemplo USA.

Data_USA = subset(Data, country == "United States")
p2 = ggplot(Data_USA, aes(x = kl, y = tp, size = pop, colour = country)) + geom_point(show.legend = FALSE, alpha = 0.7) +
  scale_color_viridis_d() + scale_size(range = c(2, 15)) + labs(x = "(K/L)", y = "tasa de plusvalía") +
  theme(plot.title = element_text(color = "black", size = 16, face = "bold.italic"), axis.title.x = element_text(color = "black", size = 16, face = "bold"), axis.title.y = element_text(color = "black", size = 16, face = "bold"))
animacion_plot = p2 +
  transition_time(year) +
  labs(title = "Dispersión TP y K/L para USA PWT 9.1. Year: {frame_time}") +
  shadow_wake(wake_length = 0.8, alpha = TRUE)
animate(animacion_plot)

Grafico interactivo para ver paises

p3 = ggplot(Data, aes(x = kl, y = tp, size = pop, colour = country)) +
  geom_point(show.legend = FALSE, alpha = 0.7) + scale_color_viridis_d() + scale_size(range = c(2, 15)) +
  labs(x = "(K/L)", y = "tasa de plusvalía") + theme(plot.title = element_text(color = "black", size = 16, face = "bold.italic"), axis.title.x = element_text(color = "black", size = 16, face = "bold"), axis.title.y = element_text(color = "black", size = 16, face = "bold"))
ggplotly(p3)
Q=plot_ly(Data, x = ~kl, y = ~tp, size = ~pop, color = ~country, 
                         frame = ~year, type = 'scatter', mode = 'markers',
                         marker = list(opacity = 0.7, sizemode = 'diameter')) %>%
  layout(title = "Dispersión TP y K/L. 82 países. 1950-2017. PWT 9.1",
         xaxis = list(title = "Ln (K/L)"),
         yaxis = list(title = "Ln tasa de plusvalía"))
Q
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors