El análisis de correspondencia múltiple (ACM) es una extensión del análisis de correspondencia simple, diseñada para resumir y visualizar una tabla de datos que contiene más de dos variables categóricas. También puede considerarse una generalización del análisis de componentes principales cuando las variables a analizar son categóricas en lugar de cuantitativas.
El ACM se utiliza principalmente para analizar conjuntos de datos de encuestas, incluyendo individuos, variables y categorÃas. Su objetivo es identificar:
Asociaciones entre categorÃas de variables: Similar a las preguntas que se formulan en un análisis de componentes principales (PCA), primero se busca entender la relación entre variables y las asociaciones entre categorÃas. Dos categorÃas están próximas entre sà si a menudo se presentan juntas. Además, se trata de identificar una o varias variables sintéticas continuas que resuman las categóricas.
Grupos de individuos con perfiles similares: Se analizan los grupos de personas según sus respuestas a las preguntas. Dos individuos están cerca uno del otro si respondieron de manera similar. El enfoque no está tanto en los individuos per se, sino en las poblaciones: ¿existen grupos de individuos con caracterÃsticas similares?
Para comenzar con el análisis de correspondencia múltiple, es necesario instalar y activar los paquetes requeridos. Estos paquetes son:
La base de datos a trabajar esta relacionada con los habitntes de calle de colombia en el año 2019, se escoge esta base de datos por su naturaleza de categorica
c<-read_excel("HCL.xlsx")
summary(c)
## Dep Edad Sexo Duerme
## Min. : 5.00 Min. :15.00 Min. :1.000 Min. :1.000
## 1st Qu.: 5.00 1st Qu.:30.00 1st Qu.:1.000 1st Qu.:1.000
## Median :68.00 Median :38.00 Median :1.000 Median :1.000
## Mean :40.58 Mean :40.27 Mean :1.113 Mean :1.253
## 3rd Qu.:76.00 3rd Qu.:50.00 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :76.00 Max. :75.00 Max. :2.000 Max. :3.000
## Oye Habla Ver Caminar
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:4.000
## Median :4.000 Median :4.000 Median :4.000 Median :4.000
## Mean :3.857 Mean :3.918 Mean :3.579 Mean :3.771
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## Manos Aprender Si_Mismo Interactuar
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000
## Median :4.000 Median :4.000 Median :4.000 Median :4.000
## Mean :3.827 Mean :3.868 Mean :3.947 Mean :3.883
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## Cardio_resp Hipertension Diabetes Cancer Tuberculosis
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:2.000 1st Qu.:2.00 1st Qu.:2.000 1st Qu.:2.000
## Median :4.000 Median :2.000 Median :2.00 Median :2.000 Median :2.000
## Mean :3.803 Mean :1.937 Mean :1.97 Mean :1.992 Mean :1.963
## 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :4.000 Max. :2.000 Max. :2.00 Max. :2.000 Max. :2.000
## Vih.Sida Motiv_Ini Años Motiv_Conti
## Min. :1.000 Min. : 1.000 Min. : 0.00 Min. : 1.000
## 1st Qu.:2.000 1st Qu.: 1.000 1st Qu.: 4.00 1st Qu.: 1.000
## Median :2.000 Median : 3.000 Median :10.00 Median : 2.000
## Mean :1.984 Mean : 4.146 Mean :13.12 Mean : 3.614
## 3rd Qu.:2.000 3rd Qu.: 7.000 3rd Qu.:20.00 3rd Qu.: 5.000
## Max. :2.000 Max. :11.000 Max. :60.00 Max. :11.000
## Contacto_fam AyudaFam AyudaAmi AyudaInsO AyudaInstP
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.00
## Median :5.000 Median :2.000 Median :2.000 Median :2.000 Median :2.00
## Mean :5.214 Mean :1.757 Mean :1.867 Mean :1.796 Mean :1.91
## 3rd Qu.:9.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.00
## Max. :9.000 Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.00
## AyudaInstR Educa Trabajo Fuma
## Min. :1.000 Min. : 1.000 Min. :1.00 Min. :1.000
## 1st Qu.:2.000 1st Qu.: 2.000 1st Qu.:3.00 1st Qu.:1.000
## Median :2.000 Median : 3.000 Median :5.00 Median :1.000
## Mean :1.931 Mean : 3.737 Mean :4.37 Mean :1.272
## 3rd Qu.:2.000 3rd Qu.: 4.000 3rd Qu.:5.00 3rd Qu.:2.000
## Max. :2.000 Max. :13.000 Max. :9.00 Max. :2.000
## Bebe Marihuana Inhalante Cocaina Basuco
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:1.000
## Median :2.000 Median :1.00 Median :2.000 Median :2.000 Median :1.000
## Mean :1.616 Mean :1.41 Mean :1.838 Mean :1.772 Mean :1.335
## 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.00 Max. :2.000 Max. :2.000 Max. :2.000
## HeroÃna Pepas Persecucion Contra_Volu Abuso_Polic
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.00 1st Qu.:1.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.00 Median :2.000
## Mean :1.939 Mean :1.833 Mean :1.765 Mean :1.89 Mean :1.606
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.00 Max. :2.000
## Barras_bravas P_comuni Miedo_Vida Golpes
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :1.000 Median :2.000
## Mean :1.885 Mean :1.891 Mean :1.485 Mean :1.775
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## Disparos Arma_blanca Amenazas Insultos
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:1.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.965 Mean :1.878 Mean :1.803 Mean :1.678
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## Ori_Sex
## Min. :1.000
## 1st Qu.:1.000
## Median :1.000
## Mean :1.136
## 3rd Qu.:1.000
## Max. :5.000
Convertimos las variables categoricas a factor
c$Dep<-as.factor(c$Dep)
c$Sexo<-as.factor(c$Sexo)
c$Educa<-as.factor(c$Educa)
c$Trabajo<-as.factor(c$Trabajo)
c$Motiv_Conti<-as.factor(c$Motiv_Conti)
c$Motiv_Ini<-as.factor(c$Motiv_Ini)
c$Duerme<-as.factor(c$Duerme)
c$Basuco<-as.factor(c$Basuco)
c$Bebe<-as.factor(c$Bebe)
c$Cocaina<-as.factor(c$Cocaina)
c$Fuma<-as.factor(c$Fuma)
c$HeroÃna<-as.factor(c$HeroÃna)
c$Inhalante<-as.factor(c$Inhalante)
c$Marihuana<-as.factor(c$Marihuana)
c$Pepas<-as.factor(c$Pepas)
c$AyudaAmi<-as.factor(c$AyudaAmi)
c$AyudaFam<-as.factor(c$AyudaFam)
c$AyudaInsO<-as.factor(c$AyudaInsO)
c$AyudaInstP<-as.factor(c$AyudaInstP)
c$AyudaInstR<-as.factor(c$AyudaInstR)
c$Contacto_fam<-as.factor(c$Contacto_fam)
c$Cancer<-as.factor(c$Cancer)
c$Diabetes<-as.factor(c$Diabetes)
c$Hipertension<-as.factor(c$Hipertension)
c$Vih.Sida<-as.factor(c$Vih.Sida)
c$Tuberculosis<-as.factor(c$Tuberculosis)
c$Aprender<-as.factor(c$Aprender)
c$Caminar<-as.factor(c$Caminar)
c$Cardio_resp<-as.factor(c$Cardio_resp)
c$Habla<-as.factor(c$Habla)
c$Interactuar<-as.factor(c$Interactuar)
c$Manos<-as.factor(c$Manos)
c$Oye<-as.factor(c$Oye)
c$Si_Mismo<-as.factor(c$Si_Mismo)
c$Ver<-as.factor(c$Ver)
c$Abuso_Polic<-as.factor(c$Abuso_Polic)
c$Amenazas<-as.factor(c$Amenazas)
c$Arma_blanca<-as.factor(c$Arma_blanca)
c$Disparos<-as.factor(c$Disparos)
c$Golpes<-as.factor(c$Golpes)
c$Insultos<-as.factor(c$Insultos)
c$Miedo_Vida<-as.factor(c$Miedo_Vida)
c$P_comuni<-as.factor(c$P_comuni)
c$Barras_bravas<-as.factor(c$Barras_bravas)
c$Contra_Volu<-as.factor(c$Contra_Volu)
c$Persecucion<-as.factor(c$Persecucion)
c$Ori_Sex<-as.factor(c$Ori_Sex)
names(c)[names(c) =='Educa'] <- 'ED'
names(c)[names(c) =='Edad'] <- 'E'
names(c)[names(c) =='Dep'] <- 'DP'
names(c)[names(c) =='Sexo'] <- 'SX'
names(c)[names(c) =='Oye'] <- 'O'
names(c)[names(c) =='Habla'] <- 'H'
names(c)[names(c) =='Ver'] <- 'V'
names(c)[names(c) =='Caminar'] <- 'C'
names(c)[names(c) =='Manos'] <- 'M'
names(c)[names(c) =='Aprender'] <- 'A'
names(c)[names(c) =='Si_Mismo'] <- 'S'
names(c)[names(c) =='Interactuar'] <- 'I'
names(c)[names(c) =='Cardio_resp'] <- 'CR'
names(c)[names(c) =='Hipertension'] <- 'H_P'
names(c)[names(c) =='Diabetes'] <- 'D_B'
names(c)[names(c) =='Cancer'] <- 'C_A'
names(c)[names(c) =='Tuberculosis'] <- 'T_B'
names(c)[names(c) =='Vih.Sida'] <- 'V_S'
names(c)[names(c) =='Años'] <- 'AÑ'
names(c)[names(c) =='AyudaFam'] <- 'AF'
names(c)[names(c) =='AyudaAmi'] <- 'AA'
names(c)[names(c) =='AyudaInsO'] <- 'AI'
names(c)[names(c) =='AyudaInstR'] <- 'AR'
names(c)[names(c) =='AyudaInstP'] <- 'APR'
names(c)[names(c) =='Ori_Sex'] <- 'OS'
names(c)[names(c) =='Trabajo'] <- 'TR'
names(c)[names(c) =='Motiv_Conti'] <- 'MC'
names(c)[names(c) =='Motiv_Ini'] <- 'MI'
names(c)[names(c) =='Duerme'] <- 'D'
names(c)[names(c) =='Basuco'] <- 'BA'
names(c)[names(c) =='Bebe'] <- 'BB'
names(c)[names(c) =='Cocaina'] <- 'CO'
names(c)[names(c) =='Fuma'] <- 'FU'
names(c)[names(c) =='HeroÃna'] <- 'HE'
names(c)[names(c) =='Inhalante'] <- 'IH'
names(c)[names(c) =='Marihuana'] <- 'MA'
names(c)[names(c) =='Pepas'] <- 'PP'
names(c)[names(c) =='AyudaInsO'] <- 'AO'
names(c)[names(c) =='Contacto_fam'] <- 'CF'
names(c)[names(c) =='Abuso_Polic'] <- 'AP'
names(c)[names(c) =='Amenazas'] <- 'AM'
names(c)[names(c) =='Golpes'] <- 'GO'
names(c)[names(c) =='Disparos'] <- 'DI'
names(c)[names(c) =='Barras_bravas'] <- 'Bb'
names(c)[names(c) =='Arma_blanca'] <- 'AB'
names(c)[names(c) =='P_comuni'] <- 'PC'
names(c)[names(c) =='Contra_Volu'] <- 'CV'
names(c)[names(c) =='Insultos'] <- 'IN'
names(c)[names(c) =='Miedo_Vida'] <- 'MV'
names(c)[names(c) =='Persecucion'] <- 'PE'
c$DP<-ifelse(c$DP=="5","Antioquia",ifelse(c$DP=="8" ,"Atlantico",ifelse(c$DP=="17","Caldas",ifelse(c$DP=="68" ,"Santander" ,"Valle del cauca"))))
c$SX<-ifelse(c$SX=="1","H","M")
barplot(table(c$DP),ylab="# de Habitantes de Calle",
col=c("royalblue", "seagreen", "purple", "grey","tan2" ),
xlab="Departamentos",main="Habitantes de Calle por Departamentos")
barplot(table(c$ED),ylab="# de Habitantes de Calle", col="violetred",
xlab="Niveles Educativos",main="Nivel Educativo más Alto")
barplot(table(c$TR),ylab="# de Habitantes de Calle",col="turquoise4",
xlab="Motivos",main="¿Cómo consigue usted dinero?")
barplot(table(c$MC),ylab="# de Habitantes de Calle",col="thistle3",
xlab="Motivos",main="¿Porque Continua en la Calle?")
c$ED<-revalue(c$ED, c("13"="Pr","1"="Pr","2"="Pr",
"3"="Se","4"="TU","5"="TU","6"="TU"))
#c$ED<-revalue(c$ED, c("13"="Primaria","1"="Primaria","2"="Primaria",
# "3"="Secundaria","4"="Tecnicos o Universitarios","5"="Tecnicos o Universitarios","6"="Tecnicos o Universitarios"))
summary(c$ED)
## Pr Se TU
## 3973 2767 2077
c$TR<-revalue(c$TR, c("1"="R.c","5"="Re","4"="Me",
"6"="A.i","7"="A.i","8"="A.i","9"="Ot","2"="Ot","3"="Ot"))
#c$TR<-revalue(c$TR, c("1"="Rebusque con los carros","5"="Reciclando","4"="Mendigando",
# "6"="Actos inmorales","7"="Actos inmorales","8"="Actos inmorales","9"="Otros","2"="Otros","3"="Otros"))
summary(c$TR)
## R.c Ot Me Re A.i
## 1953 1253 1116 4156 339
c$MC<-revalue(c$MC, c("1"="C.d","2"="G.p","3"="G.p","7"="G.p","9"="G.p",
"4"="F.t","5"="F.t","6"="P.f","8"="P.f","10"="P.f","11"="P.f"))
summary(c$MC)
## C.d G.p F.t P.f
## 3602 2772 1848 595
table(c$MC)
##
## C.d G.p F.t P.f
## 3602 2772 1848 595
c$MI<-revalue(c$MI, c("1"="C.d","7"="P.f","8"="P.f","6"="F.t","10"="F.t","5"="F.t",
"2"="G.p","3"="G.p","4"="G.p","9"="G.p","11"="G.p"))
#c$MI<-revalue(c$MI, c("1"="Consumo de drogas","7"="Problemas familiares","8"="Problemas familiares","6"="Falta de trabajo","10"="Falta de trabajo","5"="Falta de trabajo",
# "2"="Gusto personal","3"="Gusto personal","4"="Gusto personal","9"="Gusto personal","11"="Gusto personal"))
summary(c$MI)
## C.d G.p F.t P.f
## 3482 1546 1090 2699
#c$CF<-revalue(c$CF, c("9"="Ninguno","1"="Padres","2"="Padres","3"="Hermanos",
# "4"="Otros","5"="Otros","6"="Otros","7"="Otros","8"="Otros"))
c$CF<-revalue(c$CF, c("9"="Ni","1"="Pa","2"="Pa","3"="He",
"4"="Ot","5"="Ot","6"="Ot","7"="Ot","8"="Ot"))
summary(c$CF)
## Pa He Ot Ni
## 2673 1509 1125 3510
#c$GE<-ifelse(c$E<=29,"Jovenes",
# ifelse(c$E>29 & c$E<=39,"Adultos jovenes",
# ifelse(c$E>39 & c$E<=49,"Adultos","Adultos mayores")))
c$GE<-ifelse(c$E<=29,"J",
ifelse(c$E>29 & c$E<=39,"AJ",
ifelse(c$E>39 & c$E<=49,"A","AM")))
c$GE<-as.factor(c$GE)
summary(c$GE)
## A AJ AM J
## 1680 2785 2319 2033
c$GA<-ifelse(c$AÑ<=5,"0 a 5",
ifelse(c$AÑ>5 & c$AÑ<=15,"5 a 15","mas de 15"))
c$GA<-as.factor(c$GA)
summary(c$GA)
## 0 a 5 5 a 15 mas de 15
## 2809 3080 2928
c$MV<-as.factor(ifelse(c$MV=="1",'Me siento inseguro','Me siento seguro'))
table(c$AM)
##
## 1 2
## 1736 7081
names(c)
## [1] "DP" "E" "SX" "D" "O" "H" "V" "C" "M" "A" "S" "I"
## [13] "CR" "H_P" "D_B" "C_A" "T_B" "V_S" "MI" "AÑ" "MC" "CF" "AF" "AA"
## [25] "AI" "APR" "AR" "ED" "TR" "FU" "BB" "MA" "IH" "CO" "BA" "HE"
## [37] "PP" "PE" "CV" "AP" "Bb" "PC" "MV" "GO" "DI" "AB" "AM" "IN"
## [49] "OS" "GE" "GA"
c1<-data.frame(c[19],c[21],c[22],c[30:40],c[43:44],c[47:48],c[50:51])
summary(c1)
## MI MC CF FU BB MA IH CO
## C.d:3482 C.d:3602 Pa:2673 1:6418 1:3385 1:5203 1:1428 1:2010
## G.p:1546 G.p:2772 He:1509 2:2399 2:5432 2:3614 2:7389 2:6807
## F.t:1090 F.t:1848 Ot:1125
## P.f:2699 P.f: 595 Ni:3510
## BA HE PP PE CV AP
## 1:5865 1: 538 1:1470 1:2069 1: 967 1:3476
## 2:2952 2:8279 2:7347 2:6748 2:7850 2:5341
##
##
## MV GO AM IN GE
## Me siento inseguro:4544 1:1984 1:1736 1:2839 A :1680
## Me siento seguro :4273 2:6833 2:7081 2:5978 AJ:2785
## AM:2319
## J :2033
## GA
## 0 a 5 :2809
## 5 a 15 :3080
## mas de 15:2928
##
ACM<- MCA(X = c1,graph = F,ncp=10)
summary(ACM)
##
## Call:
## MCA(X = c1, ncp = 10, graph = F)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7
## Variance 0.161 0.109 0.078 0.074 0.067 0.057 0.054
## % of var. 11.104 7.507 5.409 5.072 4.619 3.957 3.749
## Cumulative % of var. 11.104 18.611 24.020 29.092 33.711 37.668 41.417
## Dim.8 Dim.9 Dim.10 Dim.11 Dim.12 Dim.13 Dim.14
## Variance 0.052 0.052 0.051 0.050 0.049 0.047 0.046
## % of var. 3.611 3.575 3.517 3.446 3.374 3.221 3.202
## Cumulative % of var. 45.028 48.603 52.120 55.566 58.940 62.160 65.362
## Dim.15 Dim.16 Dim.17 Dim.18 Dim.19 Dim.20 Dim.21
## Variance 0.046 0.045 0.043 0.042 0.038 0.037 0.034
## % of var. 3.154 3.082 2.981 2.867 2.595 2.519 2.329
## Cumulative % of var. 68.517 71.598 74.579 77.446 80.041 82.560 84.889
## Dim.22 Dim.23 Dim.24 Dim.25 Dim.26 Dim.27 Dim.28
## Variance 0.033 0.031 0.030 0.030 0.029 0.024 0.023
## % of var. 2.245 2.132 2.088 2.077 2.001 1.674 1.555
## Cumulative % of var. 87.133 89.265 91.353 93.430 95.431 97.105 98.660
## Dim.29
## Variance 0.019
## % of var. 1.340
## Cumulative % of var. 100.000
##
## Individuals (the 10 first)
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2
## 1 | -0.263 0.005 0.050 | 0.163 0.003 0.019 | -0.078 0.001 0.004 |
## 2 | -0.424 0.013 0.185 | 0.038 0.000 0.001 | -0.041 0.000 0.002 |
## 3 | 0.580 0.024 0.120 | 0.975 0.099 0.339 | 0.075 0.001 0.002 |
## 4 | 0.027 0.000 0.000 | -0.547 0.031 0.197 | 0.046 0.000 0.001 |
## 5 | 0.132 0.001 0.013 | 0.294 0.009 0.063 | 0.049 0.000 0.002 |
## 6 | -0.164 0.002 0.022 | 0.215 0.005 0.038 | -0.101 0.001 0.008 |
## 7 | -0.203 0.003 0.031 | 0.388 0.016 0.114 | -0.109 0.002 0.009 |
## 8 | -0.350 0.009 0.068 | -0.118 0.001 0.008 | 0.647 0.061 0.231 |
## 9 | 0.588 0.024 0.211 | 0.293 0.009 0.053 | 0.068 0.001 0.003 |
## 10 | 0.332 0.008 0.088 | -0.468 0.023 0.174 | 0.091 0.001 0.007 |
##
## Categories (the 10 first)
## Dim.1 ctr cos2 v.test Dim.2 ctr cos2 v.test
## MI_C.d | 0.193 0.455 0.024 14.612 | -0.497 4.488 0.161 -37.727 |
## MI_G.p | -0.066 0.023 0.001 -2.836 | 0.038 0.011 0.000 1.628 |
## MI_F.t | -0.494 0.936 0.034 -17.413 | 0.843 4.036 0.100 29.729 |
## MI_P.f | -0.012 0.001 0.000 -0.722 | 0.280 1.100 0.035 17.440 |
## MC_C.d | 0.265 0.890 0.048 20.674 | -0.499 4.680 0.172 -38.969 |
## MC_G.p | -0.027 0.007 0.000 -1.701 | 0.061 0.055 0.002 3.910 |
## MC_F.t | -0.420 1.149 0.047 -20.315 | 0.766 5.650 0.156 37.037 |
## MC_P.f | -0.174 0.064 0.002 -4.403 | 0.358 0.396 0.009 9.030 |
## Pa | 0.338 1.076 0.050 20.941 | -0.410 2.340 0.073 -25.386 |
## He | -0.206 0.226 0.009 -8.801 | 0.233 0.425 0.011 9.924 |
## Dim.3 ctr cos2 v.test
## MI_C.d -0.330 2.741 0.071 -25.028 |
## MI_G.p -0.153 0.260 0.005 -6.605 |
## MI_F.t 1.565 19.299 0.345 55.184 |
## MI_P.f -0.119 0.276 0.006 -7.416 |
## MC_C.d -0.388 3.915 0.104 -30.255 |
## MC_G.p -0.212 0.900 0.021 -13.477 |
## MC_F.t 1.068 15.237 0.302 51.631 |
## MC_P.f 0.018 0.001 0.000 0.457 |
## Pa 0.289 1.618 0.036 17.919 |
## He -0.092 0.092 0.002 -3.926 |
##
## Categorical variables (eta2)
## Dim.1 Dim.2 Dim.3
## MI | 0.046 0.210 0.354 |
## MC | 0.068 0.235 0.315 |
## CF | 0.051 0.086 0.049 |
## FU | 0.040 0.036 0.004 |
## BB | 0.044 0.005 0.030 |
## MA | 0.131 0.079 0.003 |
## IH | 0.214 0.072 0.009 |
## CO | 0.219 0.053 0.077 |
## BA | 0.090 0.150 0.176 |
## HE | 0.124 0.060 0.038 |
fviz_screeplot(ACM,labelsize = 0.1,addlabels = T,barfill = "yellow3")
Mediante ACM se explica en el plano 1-2 el 17% de la variab. de la información
cor<-corrplot(cl.cex = 0.8,tl.cex = 0.8,tl.col = "gray2",t(ACM$var$cos2),is.corr = F)
contribuciones <-ACM$var$contrib
#Plano 1-2
fviz_mca_biplot(X = ACM,title = "Plano 1-2 del ACM según Miedo a morir",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MV,repel=T)
fviz_mca_biplot(X = ACM,title = "Plano 1-2 del ACM según Motivo Inicio",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MI)
fviz_mca_biplot(X = ACM,title = "Plano 1-2 del ACM según Motivo continuar",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MC)
fviz_mca_biplot(X = ACM,title = "Plano de Ejes 1-2 Según Consumo de Bazuco",labelsize = 4,col.var="gray2",label="var",col.ind=c1$BA)
fviz_mca_biplot(X = ACM,title = "Plano de Ejes 1-2 Según Consumo de Marihuana",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MA)
fviz_mca_biplot(X = ACM,title = "Plano de Ejes 1-2 Según Consumo de Inhalantes",labelsize = 4,col.var="gray2",label="var",col.ind=c1$IH)
fviz_mca_biplot(X = ACM,title = "Plano de Ejes 1-2 Según Consumo de Pepas",labelsize = 4,col.var="gray2",label="var",col.ind=c1$PP)
fviz_mca_biplot(X = ACM,title = "Plano de Ejes 1-2 Según Grupos de Edad",labelsize = 4,col.var="gray2",label="var",col.ind=c1$GE)
## BIPLOTS Plano 1-4 Y 3-4
#Plano 3-4
fviz_mca_biplot(X = ACM, axes = c(1, 4),repel=T,title = "Plano 1-4 del ACM según Miedo a morir",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MV)
fviz_mca_biplot(X = ACM, axes = c(3, 4),title = "Plano 3-4 del ACM según Motivo de inicio",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MI,repel=T)
fviz_mca_biplot(X = ACM, axes = c(3, 4),title = "Plano 3-4 del ACM según Motivo de Inicio",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MC)
fviz_mca_biplot(X = ACM, axes = c(3, 4),title = "Plano 3-4 del ACM según Motivo para Continuar en la Calle",labelsize = 4,col.var="gray2",label="var",col.ind=c1$MC)
Se corre clusters sobre las dimensiones que reflejan el 70% de la información en este caso sobre las primeras 15.
set.seed(123) # Fijar la semilla para reproducibilidad
c2<-sample_frac(c1, 0.2, replace = TRUE)
ACM<- MCA(X = c2,graph = F,ncp=15)
summary(ACM)
##
## Call:
## MCA(X = c2, ncp = 15, graph = F)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7
## Variance 0.167 0.105 0.079 0.075 0.067 0.059 0.055
## % of var. 11.494 7.249 5.477 5.168 4.649 4.055 3.793
## Cumulative % of var. 11.494 18.743 24.219 29.387 34.036 38.091 41.884
## Dim.8 Dim.9 Dim.10 Dim.11 Dim.12 Dim.13 Dim.14
## Variance 0.054 0.052 0.051 0.050 0.049 0.048 0.046
## % of var. 3.733 3.615 3.512 3.449 3.401 3.333 3.178
## Cumulative % of var. 45.617 49.231 52.744 56.193 59.594 62.927 66.105
## Dim.15 Dim.16 Dim.17 Dim.18 Dim.19 Dim.20 Dim.21
## Variance 0.045 0.043 0.041 0.040 0.036 0.035 0.034
## % of var. 3.135 2.978 2.860 2.738 2.517 2.430 2.354
## Cumulative % of var. 69.240 72.217 75.077 77.815 80.332 82.762 85.116
## Dim.22 Dim.23 Dim.24 Dim.25 Dim.26 Dim.27 Dim.28
## Variance 0.033 0.032 0.030 0.030 0.028 0.024 0.022
## % of var. 2.262 2.185 2.073 2.061 1.908 1.685 1.495
## Cumulative % of var. 87.378 89.563 91.636 93.698 95.606 97.291 98.785
## Dim.29
## Variance 0.018
## % of var. 1.215
## Cumulative % of var. 100.000
##
## Individuals (the 10 first)
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2
## 1 | 0.844 0.242 0.345 | 0.565 0.172 0.155 | -0.367 0.096 0.065 |
## 2 | -0.240 0.020 0.050 | -0.380 0.078 0.127 | 0.043 0.001 0.002 |
## 3 | 0.371 0.047 0.068 | -0.270 0.039 0.036 | 0.471 0.158 0.110 |
## 4 | 0.246 0.021 0.042 | -0.048 0.001 0.002 | 0.048 0.002 0.002 |
## 5 | -0.207 0.015 0.037 | 0.132 0.009 0.015 | 0.356 0.091 0.110 |
## 6 | 0.291 0.029 0.049 | -0.067 0.002 0.003 | 0.389 0.108 0.088 |
## 7 | -0.402 0.055 0.130 | 0.028 0.000 0.001 | 0.397 0.112 0.126 |
## 8 | -0.323 0.035 0.074 | 0.155 0.013 0.017 | 0.672 0.323 0.320 |
## 9 | 0.330 0.037 0.067 | 0.517 0.144 0.164 | -0.501 0.179 0.154 |
## 10 | -0.260 0.023 0.072 | -0.348 0.065 0.129 | -0.138 0.014 0.020 |
##
## Categories (the 10 first)
## Dim.1 ctr cos2 v.test Dim.2 ctr cos2 v.test
## MI_C.d | 0.222 0.561 0.030 7.299 | -0.248 1.117 0.038 -8.175 |
## MI_G.p | -0.069 0.027 0.001 -1.404 | -0.228 0.476 0.012 -4.671 |
## MI_F.t | -0.494 0.848 0.032 -7.504 | 0.916 4.615 0.110 13.903 |
## MI_P.f | -0.045 0.019 0.001 -1.277 | 0.105 0.162 0.005 2.947 |
## MC_C.d | 0.304 1.119 0.063 10.495 | -0.236 1.067 0.038 -8.137 |
## MC_G.p | -0.056 0.030 0.001 -1.594 | -0.243 0.875 0.027 -6.863 |
## MC_F.t | -0.379 0.898 0.038 -8.162 | 0.812 6.543 0.174 17.501 |
## MC_P.f | -0.343 0.268 0.010 -4.124 | 0.018 0.001 0.000 0.221 |
## Pa | 0.334 0.999 0.047 9.140 | -0.335 1.592 0.048 -9.164 |
## He | -0.195 0.182 0.007 -3.561 | 0.003 0.000 0.000 0.056 |
## Dim.3 ctr cos2 v.test
## MI_C.d -0.726 12.658 0.325 -23.925 |
## MI_G.p 0.276 0.923 0.018 5.654 |
## MI_F.t 1.325 12.799 0.230 20.126 |
## MI_P.f 0.226 1.003 0.023 6.382 |
## MC_C.d -0.749 14.253 0.379 -25.855 |
## MC_G.p 0.283 1.572 0.036 7.995 |
## MC_F.t 0.977 12.556 0.252 21.073 |
## MC_P.f 0.130 0.081 0.001 1.566 |
## Pa 0.300 1.687 0.038 8.201 |
## He -0.193 0.374 0.007 -3.527 |
##
## Categorical variables (eta2)
## Dim.1 Dim.2 Dim.3
## MI | 0.049 0.134 0.435 |
## MC | 0.077 0.178 0.452 |
## CF | 0.050 0.056 0.056 |
## FU | 0.031 0.057 0.009 |
## BB | 0.040 0.000 0.041 |
## MA | 0.103 0.096 0.005 |
## IH | 0.211 0.115 0.019 |
## CO | 0.166 0.109 0.075 |
## BA | 0.091 0.108 0.189 |
## HE | 0.117 0.070 0.018 |
ACM$eig
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.16665917 11.493736 11.49374
## dim 2 0.10510775 7.248810 18.74255
## dim 3 0.07941453 5.476864 24.21941
## dim 4 0.07492936 5.167542 29.38695
## dim 5 0.06740637 4.648715 34.03567
## dim 6 0.05879657 4.054936 38.09060
## dim 7 0.05500499 3.793448 41.88405
## dim 8 0.05412548 3.732792 45.61684
## dim 9 0.05241086 3.614542 49.23138
## dim 10 0.05092654 3.512175 52.74356
## dim 11 0.05001532 3.449333 56.19289
## dim 12 0.04931094 3.400754 59.59365
## dim 13 0.04832806 3.332969 62.92662
## dim 14 0.04607979 3.177916 66.10453
## dim 15 0.04545944 3.135134 69.23967
## dim 16 0.04317377 2.977501 72.21717
## dim 17 0.04146349 2.859551 75.07672
## dim 18 0.03970029 2.737951 77.81467
## dim 19 0.03649933 2.517195 80.33187
## dim 20 0.03523702 2.430140 82.76201
## dim 21 0.03412814 2.353665 85.11567
## dim 22 0.03280412 2.262353 87.37802
## dim 23 0.03168859 2.185420 89.56344
## dim 24 0.03005341 2.072649 91.63609
## dim 25 0.02989045 2.061410 93.69750
## dim 26 0.02767043 1.908305 95.60581
## dim 27 0.02442962 1.684801 97.29061
## dim 28 0.02167548 1.494861 98.78547
## dim 29 0.01761069 1.214530 100.00000
HC_eig <- ACM$eig[1:15,c(1,3)]# se seleccionan 15 dimensiones que explican el 70% de la variabilidad
Cluster_HC <- HCPC(ACM,nb.clust = -1,method="ward",graph = F)
plot(Cluster_HC, choice="tree",title = "Cluster de Habitantes de Calle")
c2$Cluster<-Cluster_HC$data.clust$clust
fviz_cluster(Cluster_HC, geom = "point", main = "Factor map")
fviz_mca_biplot(X = ACM,title = "Plano 1-2 del ACM según Clústers",labelsize = 3,col.var="gray2",label="var",col.ind=c2$Cluster)
fviz_mca_biplot(X = ACM, axes = c(1, 5),title = "Plano 1-5 del ACM según Clústers",labelsize = 3,col.var="gray2",label="var",col.ind=c2$Cluster)
# Gráfico de # de HC por Cluster
Dat_HC <- Cluster_HC$data.clust
Consulta_HC <- Dat_HC %>% group_by(clust) %>% summarise(Cuenta = n())
rm(Dat_HC)
Consulta_HC$clust <- paste("Cluster ",Consulta_HC$clust,"(",
round(Consulta_HC$Cuenta/sum(Consulta_HC$Cuenta)*100,2),
"%)",sep = "")
ggplot(Consulta_HC, aes(x="", y=Cuenta, fill=clust))+
geom_bar(width = 1, stat = "identity") +
coord_polar("y", start=0)