Data

load("~/Desktop/DiversityRecombObjects.Robj")
library(ppcor)
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(cowplot)
## Loading required package: ggplot2
## 
## Attaching package: 'cowplot'
## 
## The following object is masked from 'package:ggplot2':
## 
##     ggsave
teoPi=data.frame(teoPi)
colnames(teoPi)=colnames(maizePi)
maizePi=na.omit(maizePi)
teoPi=na.omit(teoPi)
maizeSingle=na.omit(maizeSingle)
teoSingle=na.omit(teoSingle)

Function

par_cor<-function(x,y,z,taxa,type){
xres=lm(x~z)$residuals
yres=lm(y~z)$residuals
bob=data.frame(xres,yres) %>% mutate(taxa,type)
colnames(bob)=c("diversity","recombination","taxa","type")
#bob.plot=ggplot(bob,aes(x=xres,y=yres))+geom_smooth()+xlab(xlab)+ylab(ylab)+ggtitle(taxa)
#return(list(bob,bob.plot))
return(bob)
}

Partial Cors \(\pi\) teo

res<-data.frame()
test_teoPi=data.frame(teoPi$tP,teoPi$CmPerMb,teoPi$gene_no_500kb)
pcor(test_teoPi,method="spearman")$estimate
##                       teoPi.tP teoPi.CmPerMb teoPi.gene_no_500kb
## teoPi.tP            1.00000000    0.04367917          0.04704015
## teoPi.CmPerMb       0.04367917    1.00000000          0.81932888
## teoPi.gene_no_500kb 0.04704015    0.81932888          1.00000000
pcor(test_teoPi,method="spearman")$p.value
##                     teoPi.tP teoPi.CmPerMb teoPi.gene_no_500kb
## teoPi.tP                   0             0                   0
## teoPi.CmPerMb              0             0                   0
## teoPi.gene_no_500kb        0             0                   0
pcor(test_teoPi,method="pearson")$estimate
##                        teoPi.tP teoPi.CmPerMb teoPi.gene_no_500kb
## teoPi.tP             1.00000000    -0.0250708          0.09878174
## teoPi.CmPerMb       -0.02507080     1.0000000          0.70296208
## teoPi.gene_no_500kb  0.09878174     0.7029621          1.00000000
pcor(test_teoPi,method="pearson")$p.value
##                          teoPi.tP teoPi.CmPerMb teoPi.gene_no_500kb
## teoPi.tP             0.000000e+00 1.356132e-111                   0
## teoPi.CmPerMb       1.356132e-111  0.000000e+00                   0
## teoPi.gene_no_500kb  0.000000e+00  0.000000e+00                   0
res=par_cor(teoPi$CmPerMb,teoPi$tP,teoPi$gene_no_500kb,"teo","pi")

Partial Cors \(\pi\) maize

test_maizePi=data.frame(maizePi$tP,maizePi$CmPerMb,maizePi$gene_no_500kb)
pcor(test_maizePi,method="spearman")$estimate
##                       maizePi.tP maizePi.CmPerMb maizePi.gene_no_500kb
## maizePi.tP            1.00000000      0.04247499            0.07913287
## maizePi.CmPerMb       0.04247499      1.00000000            0.81269637
## maizePi.gene_no_500kb 0.07913287      0.81269637            1.00000000
pcor(test_maizePi,method="spearman")$p.value
##                       maizePi.tP maizePi.CmPerMb maizePi.gene_no_500kb
## maizePi.tP                     0               0                     0
## maizePi.CmPerMb                0               0                     0
## maizePi.gene_no_500kb          0               0                     0
pcor(test_maizePi,method="pearson")$estimate
##                          maizePi.tP maizePi.CmPerMb maizePi.gene_no_500kb
## maizePi.tP             1.0000000000   -0.0001001366             0.1206627
## maizePi.CmPerMb       -0.0001001366    1.0000000000             0.6899455
## maizePi.gene_no_500kb  0.1206626595    0.6899454869             1.0000000
pcor(test_maizePi,method="pearson")$p.value
##                       maizePi.tP maizePi.CmPerMb maizePi.gene_no_500kb
## maizePi.tP             0.0000000       0.9236404                     0
## maizePi.CmPerMb        0.9236404       0.0000000                     0
## maizePi.gene_no_500kb  0.0000000       0.0000000                     0
res=rbind(res,par_cor(maizePi$CmPerMb,maizePi$tP,maizePi$gene_no_500kb,"maize","pi"))

Partial Cors \(\eta_1\) teo

test_teoSingle=data.frame(teoSingle$tF,teoSingle$CmPerMb,teoSingle$gene_no_500kb)
pcor(test_teoSingle,method="spearman")$estimate
##                         teoSingle.tF teoSingle.CmPerMb
## teoSingle.tF             1.000000000        0.01732321
## teoSingle.CmPerMb        0.017323208        1.00000000
## teoSingle.gene_no_500kb  0.002736886        0.83054261
##                         teoSingle.gene_no_500kb
## teoSingle.tF                        0.002736886
## teoSingle.CmPerMb                   0.830542610
## teoSingle.gene_no_500kb             1.000000000
pcor(test_teoSingle,method="spearman")$p.value
##                         teoSingle.tF teoSingle.CmPerMb
## teoSingle.tF            0.000000e+00      3.899812e-43
## teoSingle.CmPerMb       3.899812e-43      0.000000e+00
## teoSingle.gene_no_500kb 2.962360e-02      0.000000e+00
##                         teoSingle.gene_no_500kb
## teoSingle.tF                          0.0296236
## teoSingle.CmPerMb                     0.0000000
## teoSingle.gene_no_500kb               0.0000000
pcor(test_teoSingle,method="pearson")$estimate
##                         teoSingle.tF teoSingle.CmPerMb
## teoSingle.tF              1.00000000       -0.03276168
## teoSingle.CmPerMb        -0.03276168        1.00000000
## teoSingle.gene_no_500kb   0.03073661        0.71066159
##                         teoSingle.gene_no_500kb
## teoSingle.tF                         0.03073661
## teoSingle.CmPerMb                    0.71066159
## teoSingle.gene_no_500kb              1.00000000
pcor(test_teoSingle,method="pearson")$p.value
##                          teoSingle.tF teoSingle.CmPerMb
## teoSingle.tF             0.000000e+00     1.324496e-149
## teoSingle.CmPerMb       1.324496e-149      0.000000e+00
## teoSingle.gene_no_500kb 6.623908e-132      0.000000e+00
##                         teoSingle.gene_no_500kb
## teoSingle.tF                      6.623908e-132
## teoSingle.CmPerMb                  0.000000e+00
## teoSingle.gene_no_500kb            0.000000e+00
res=rbind(res,par_cor(teoSingle$CmPerMb,teoSingle$tF,teoSingle$gene_no_500kb,"teo","single"))

Partial Cors \(\eta_1\) maize

test_maizeSingle=data.frame(maizeSingle$tF,maizeSingle$CmPerMb,maizeSingle$gene_no_500kb)
pcor(test_maizeSingle,method="spearman")$estimate
##                           maizeSingle.tF maizeSingle.CmPerMb
## maizeSingle.tF                1.00000000          0.02031323
## maizeSingle.CmPerMb           0.02031323          1.00000000
## maizeSingle.gene_no_500kb     0.01616088          0.82026485
##                           maizeSingle.gene_no_500kb
## maizeSingle.tF                           0.01616088
## maizeSingle.CmPerMb                      0.82026485
## maizeSingle.gene_no_500kb                1.00000000
pcor(test_maizeSingle,method="spearman")$p.value
##                           maizeSingle.tF maizeSingle.CmPerMb
## maizeSingle.tF              0.000000e+00        2.063631e-73
## maizeSingle.CmPerMb         2.063631e-73        0.000000e+00
## maizeSingle.gene_no_500kb   3.987090e-47        0.000000e+00
##                           maizeSingle.gene_no_500kb
## maizeSingle.tF                          3.98709e-47
## maizeSingle.CmPerMb                     0.00000e+00
## maizeSingle.gene_no_500kb               0.00000e+00
pcor(test_maizeSingle,method="pearson")$estimate
##                           maizeSingle.tF maizeSingle.CmPerMb
## maizeSingle.tF                1.00000000         -0.01774765
## maizeSingle.CmPerMb          -0.01774765          1.00000000
## maizeSingle.gene_no_500kb     0.04018700          0.69570391
##                           maizeSingle.gene_no_500kb
## maizeSingle.tF                            0.0401870
## maizeSingle.CmPerMb                       0.6957039
## maizeSingle.gene_no_500kb                 1.0000000
pcor(test_maizeSingle,method="pearson")$p.value
##                           maizeSingle.tF maizeSingle.CmPerMb
## maizeSingle.tF              0.000000e+00        1.810992e-56
## maizeSingle.CmPerMb         1.810992e-56        0.000000e+00
## maizeSingle.gene_no_500kb  6.898197e-282        0.000000e+00
##                           maizeSingle.gene_no_500kb
## maizeSingle.tF                        6.898197e-282
## maizeSingle.CmPerMb                    0.000000e+00
## maizeSingle.gene_no_500kb              0.000000e+00
res=rbind(res,par_cor(maizeSingle$CmPerMb,maizeSingle$tF,maizeSingle$gene_no_500kb,"maize","single"))
ggplot(res,aes(x=recombination,y=diversity,color=taxa,linetype=type))+geom_smooth(size=1)
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.