library(ggplot2)
melb_rent_data <- read.csv("MelbRent2024New.csv")
melb_rent_data$Date <- as.Date(paste0("01-", melb_rent_data$Date), format = "%d-%b-%y")
p0 <- ggplot(data = melb_rent_data) +
geom_point(aes(x = Date, y = Inner.Melb), colour = "#4D8261") +
geom_point(aes(x = Date, y = Inner.East), colour = "#78824D") +
geom_point(aes(x = Date, y = Southern.Melb), colour = "#824E4F") +
geom_point(aes(x = Date, y = Outer.West), colour = "#764E81") +
geom_point(aes(x = Date, y = North.West), colour = "#4E6481") +
geom_point(aes(x = Date, y = North.East), colour = "#4E8161") +
geom_point(aes(x = Date, y = Outer.East), colour = "#915E67") +
geom_point(aes(x = Date, y = South.East), colour = "#97AF87") +
labs(
title = "Melbourne Rent",
subtitle = "Weekly Rent Price since 2000",
y = "Rent\nPrice\n(AUD)",
x = "Date") +
scale_x_date(date_breaks = "5 years", date_labels = "%Y") +
theme_minimal() +
theme(
panel.grid = element_blank(),
axis.line = element_line(colour = "#B06148"),
axis.text.x = element_text(colour = "#B06148"),
axis.text.y = element_text(colour = "#B06148"),
axis.title.x = element_text(colour = "#7d4533"),
axis.title.y = element_text(angle = 0, colour = "#7d4533"),
plot.title = element_text(colour = "#7d4533"),
plot.subtitle = element_text(colour = "#B06148"),
panel.background = element_rect(fill = "#F7CB99", colour = "#F7CB99"),
plot.background = element_rect(fill = "#F7CB99", colour = "#F7CB99")
)
p0

library(ggplot2)
rent_data <- read.csv("RentJune2024New.csv")
rent_data$Date <- as.Date(paste0("01-", rent_data$Date), format = "%d-%b-%y")
p1 <- ggplot(data = rent_data, aes(x = Date, y = Inner.Melb))
p1 <- p1 + geom_point(colour = "#4D8261") +
labs(
title = "Inner Melbourne",
subtitle = "Weekly Rent Price since 2000",
y = "Rent\nPrice\n(AUD)",
x = "Date") +
scale_x_date(date_breaks = "5 years", date_labels = "%Y") +
theme_minimal() +
theme(
panel.grid = element_blank(),
axis.line = element_line(colour = "#B06148"),
axis.text.x = element_text(colour = "#B06148"),
axis.text.y = element_text(colour = "#B06148"),
axis.title.x = element_text(colour = "#7d4533"),
axis.title.y = element_text(angle = 0, colour = "#7d4533"),
plot.title = element_text(colour = "#7d4533"),
plot.subtitle = element_text(colour = "#B06148"),
panel.background = element_rect(fill = "#F7CB99", colour = "#F7CB99"),
plot.background = element_rect(fill = "#F7CB99", colour = "#F7CB99")
)
# Grey - #CACED0
# Tan - #F7CB99
# Green - #4D8261
# Brown - #B06148
p1

library(ggplot2)
count_data <- read.csv("CountJune2024New.csv")
count_data$Date <- as.Date(paste0("01-", count_data$Date), format = "%d-%b-%y")
p2 <- ggplot(data = count_data, aes(x = Date, y = Inner.Melbourne))
p2 <- p2 + geom_point(colour = "#4D8261") +
labs(
title = "Inner Melbourne",
subtitle = "Availabilities since 2000",
y = "Count",
x = "Date") +
scale_x_date(date_breaks = "5 years", date_labels = "%Y") +
theme_minimal() +
theme(
panel.grid = element_blank(),
axis.line = element_line(colour = "#B06148"),
axis.text.x = element_text(colour = "#B06148"),
axis.text.y = element_text(colour = "#B06148"),
axis.title.x = element_text(colour = "#7d4533"),
axis.title.y = element_text(angle = 0, colour = "#7d4533"),
plot.title = element_text(colour = "#7d4533"),
plot.subtitle = element_text(colour = "#B06148"),
panel.background = element_rect(fill = "#F7CB99", colour = "#F7CB99"),
plot.background = element_rect(fill = "#F7CB99", colour = "#F7CB99")
)
p2

library(ggplot2)
melb_wage_data <- read.csv("Wages2024New.csv")
melb_wage_data$Date <- as.Date(paste0("01-", melb_wage_data$Date), format = "%d-%b-%y")
melb_wage_data$Date.1 <- as.Date(paste0("01-", melb_wage_data$Date.1), format = "%d-%b-%y")
p3 <- ggplot(data = melb_wage_data) +
geom_point(aes(x = Date, y = Wages), colour = "#9D3733") +
geom_point(aes(x = Date.1, y = Rent), colour = "#4D8261") +
labs(
title = "Wage Growth vs Rent Prices",
subtitle = "Proportional Increase since 2012",
y = "_________",
x = "Date") +
scale_x_date(date_breaks = "2 years", date_labels = "%Y") +
theme_minimal() +
theme(
panel.grid = element_blank(),
axis.line = element_line(colour = "#B06148"),
axis.text.x = element_text(colour = "#B06148"),
axis.text.y = element_text(colour = "#B06148"),
axis.title.x = element_text(colour = "#7d4533"),
axis.title.y = element_text(angle = 0, colour = "#7d4533"),
plot.title = element_text(colour = "#7d4533"),
plot.subtitle = element_text(colour = "#B06148"),
panel.background = element_rect(fill = "#F7CB99", colour = "#F7CB99"),
plot.background = element_rect(fill = "#F7CB99", colour = "#F7CB99")
)
p3
## Warning: Removed 25 rows containing missing values or values outside the scale range
## (`geom_point()`).
