多元数据直观表示+线性回归分析

Author

221527107杨怡婕

1 多元数据直观表示

1.1 各省消费项目均值条形图

省份过多,各省的名称均不能全部显示

barplot(apply(data,1,mean))#按行做均值条形图

将横轴左边旋转90度,各省的名称均可显示

barplot(apply(data,1,mean),las=3)#按行做均值条形图

利用ggplot2包作图较为美观

data %>%
  mutate(Average_Consumption = rowMeans(select(., -1), na.rm = TRUE)) %>% 
  ggplot(aes(x = reorder(row.names(data), -Average_Consumption), y = Average_Consumption)) +
  geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
  labs(title = "各省消费项目均值条形图", x = "", y = "均值") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 

1.2 各消费项目均值条形图

按消费项目做均值图条形图

barplot(apply(data,2,mean))#按列做均值图条形图

对不同项目的条形添加不同颜色

 barplot(apply(data,2,mean),col=1:8) #按列做彩色均值图条形图

去掉食品列后的数据按列做均值条形图

barplot(apply(data[,2:8],2,mean))

按消费项目做中位数条形图

barplot(apply(data,2,median))

利用ggplot作均值条形图

data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>% 
  pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>% 
  mutate(
    Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
  ) %>% 
  ggplot(aes(x = Consumption_Type, y = Average, fill = Consumption_Type)) +
  geom_bar(stat = "identity", position = position_dodge(), colour = "black") +
  theme_minimal() +
  labs(title = "各消费项目均值条形图", x = "类别", y = "均值",fill = "消费种类")
Warning: There was 1 warning in `summarise()`.
ℹ In argument: `across(everything(), mean, na.rm = TRUE)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.

  # Previously
  across(a:b, mean, na.rm = TRUE)

  # Now
  across(a:b, \(x) mean(x, na.rm = TRUE))

使各条形的颜色相同

data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>% 
  pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>% 
  mutate(
    Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
  ) %>% 
  ggplot(aes(x = Consumption_Type, y = Average)) +
  geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
  theme_minimal() +
  labs(title = "各消费项目均值条形图", x = "类别", y = "均值")

1.3 各消费项目箱线图

boxplot函数直接作箱线图,默认每个变量(列)作一个箱线,并将全部变量的箱线在同一个图中展示。

boxplot(data)#按列做箱线图

boxplot(data,horizontal=T,las=1)#箱线图中图形按水平放置

利用ggplot函数作箱线图,需要对数据转化为长结果数据

data %>% pivot_longer(cols = 1:8, names_to = "Consumption_Type", values_to = "Value") %>% 
  mutate(
    Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
  ) %>% 
  ggplot(aes(x = Consumption_Type, y = Value)) +
  geom_boxplot() +
  labs(title = "各消费项目箱线图", x = "", y = "消费水平") +
  theme_minimal() #  + coord_flip() 

1.4 各消费项目星相图

这是不具有图例的星象图,不能知道直线对应哪种消费

stars(data)

这是具有图例的星象图,可知每条直线对应的消费。北京,上海,浙江,广东的面积比较大,可以知道消费水平比较高

stars(data,key.loc=c(-3,14))

full=F代表不接受圆的星象图,而是半圆星象图

stars(data,full=F,key.loc=c(17,7))  

给全圆星象图加颜色

stars(data,draw.segments=T,key.loc=c(17,7))

给半圆星象图加颜色

stars(data,full=F,draw.segments=T,key.loc=c(17,7))

1.5 各消费项目脸谱图

这是脸谱图

library(aplpack) #加载aplpack包
aplpack::faces(data)

effect of variables:
 modified item       Var   
 "height of face   " "食品"
 "width of face    " "衣着"
 "structure of face" "设备"
 "height of mouth  " "医疗"
 "width of mouth   " "交通"
 "smiling          " "教育"
 "height of eyes   " "居住"
 "width of eyes    " "杂项"
 "height of hair   " "食品"
 "width of hair   "  "衣着"
 "style of hair   "  "设备"
 "height of nose  "  "医疗"
 "width of nose   "  "交通"
 "width of ear    "  "教育"
 "height of ear   "  "居住"

按每行7个作脸谱图,去掉第1个消费指标

aplpack::faces(data[,2:8],ncol.plot=7)

effect of variables:
 modified item       Var   
 "height of face   " "衣着"
 "width of face    " "设备"
 "structure of face" "医疗"
 "height of mouth  " "交通"
 "width of mouth   " "教育"
 "smiling          " "居住"
 "height of eyes   " "杂项"
 "width of eyes    " "衣着"
 "height of hair   " "设备"
 "width of hair   "  "医疗"
 "style of hair   "  "交通"
 "height of nose  "  "教育"
 "width of nose   "  "居住"
 "width of ear    "  "杂项"
 "height of ear   "  "衣着"

画出指定省份的消费脸谱图

faces(data[c(1,9,19,28,29,30),])

另一种q版脸谱图

library("TeachingDemos")
faces2(data,ncols=7)

1.6 各消费项目雷达图

ggplot2的扩展包ggiraphExtra能作雷达图

画出指定省份各指标的雷达图

data[c(1,9,19,28,29,30),] %>% 
  mutate(省份=rownames(.)) %>% 
  ggRadar(aes(group = 省份)) 

library("fmsb")
rddat=data[c(1,9,19,28,29,30),]
maxmin=rbind(apply(rddat,2,max),apply(rddat,2,min))
rddat=rbind(maxmin,rddat)
radarchart(rddat, axistype=2, pcol=topo.colors(6), plty=1, pdensity=seq(5,40,by=5), pangle=seq(0,150,by=30), pfcol=topo.colors(6))

1.7 各消费项目调和曲线图

#install.packages("andrews")
library(andrews) 
Warning: package 'andrews' was built under R version 4.3.3
See the package vignette with `vignette("andrews")`
andrews(data,clr=5,ymax=6)

#选择第1,9,19,28,29,30个观测的多元数据做调和曲线图
andrews(data[c(1,9,19,28,29,30),],clr=5,ymax=6) 

2 线性回归分析

2.1 一元线性回归2-1

  1. 每周加班工作时间(x)与签发新保单数目(y)呈明显正相关

  2. 每周加班工作时间(x)与签发新保单数目(y)的相关系数为0.95 。

  3. 利用每周加班工作时间(x)对签发新保单数目(y)作回归,回归方程为

    \[ \widehat{y} =46.15+251.17\times x\]

  4. 随机误差\(\epsilon\)的标准差\(\sigma\)的估计值为127.06

2.2 多元线性回归2-2

  1. 利用广告预算(x1)和销售代理数目(x2)对年销售额(y)作回归,回归方程为:

    term estimate std.error statistic p.value
    (Intercept) -22.74 30.69 -0.74 0.49
    x1 0.15 0.11 1.33 0.24
    x2 1.22 1.31 0.93 0.40

    \[ \widehat{y} =-22.74+0.15\times x1+1.22\times x2\]

  2. 5%显著水平下,广告预算(x1)和销售代理数目(x2)的系数均不显著。

  3. 广告预算(x1)与销售额(y)相关系数为0.5797;销售代理数目(x2)与销售额(y)相关系数为0.4816 ;广告预算(x1)和销售代理数目(x2)与年销售额(y)的复相关系数为0.6586 。

2.3 多元线性回归2-3

  1. 从回归方程中可知每增加一单位GPA,起始工资增加0.1511。 每增加1岁,起始工资增加1.2166。

    term estimate std.error statistic p.value
    (Intercept) -5213.1 12704.5 -0.41 0.70
    GPA 8508.8 2721.6 3.13 0.03
    年龄 181.6 283.5 0.64 0.55

    \[ \widehat{起始工资} =-5213.12+8508.79\times GPA+181.58\times 年龄\]

  2. 含义: 由分析结果可知,常数项估计值为-5213.1,p值为0.7,表示常数项在统计上不显著。GPA的估计系数为8508.8,p值为0.03,表明GPA对起始工资的影响在统计上显著。年龄的估计系数为181.6,p值为0.55,表明年龄对起始工资的影响在统计上不显著。

  3. 当GPA=3,年龄=24,起始工资的预测值为2.4671^{4} 。

2.4 线性模型选择2-4

  1. 货运总量(y)、工业总产值(x1)、农业总产值(x2)、居民非商品支出(x3)的相关系数矩阵为:

           y    x1    x2    x3
    y  1.000 0.556 0.731 0.724
    x1 0.556 1.000 0.113 0.398
    x2 0.731 0.113 1.000 0.547
    x3 0.724 0.398 0.547 1.000

    散点图矩阵为:

  2. 回归方程为:

    \[ \widehat{y} =-348.28+3.75\times x1+7.1\times x2+12.45\times x3\]

  3. 回归模型的R方为:0.8055 ,说明模型对数据的拟合效果好,自变量能够很好地解释因变量的变异。

  4. 回归模型F检验的p值远小于0.05,这表明拒绝原假设,说明回归模型对y值的影响是比较显著的 。t检验表明该回归模型的x1,x3的p值均大于0.05,这说明对y的影响不显著。

    
    Call:
    lm(formula = y ~ ., data = data)
    
    Residuals:
       Min     1Q Median     3Q    Max 
    -25.20 -17.03   2.63  11.68  33.23 
    
    Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
    (Intercept)  -348.28     176.46   -1.97    0.096 .
    x1              3.75       1.93    1.94    0.100  
    x2              7.10       2.88    2.47    0.049 *
    x3             12.45      10.57    1.18    0.284  
    ---
    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
    Residual standard error: 23.4 on 6 degrees of freedom
    Multiple R-squared:  0.806, Adjusted R-squared:  0.708 
    F-statistic: 8.28 on 3 and 6 DF,  p-value: 0.0149
  5. 剔除不显著的x1,x3后,回归模型为

    \[ \widehat{y} =-159.93+9.69\times x2\]

    进行回归方程的检验

    summary(model_fit1)
    
    Call:
    lm(formula = y ~ x2, data = data)
    
    Residuals:
       Min     1Q Median     3Q    Max 
    -56.07 -18.79   5.81  25.50  32.38 
    
    Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
    (Intercept)  -159.93     129.71   -1.23    0.253  
    x2              9.69       3.20    3.03    0.016 *
    ---
    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
    Residual standard error: 31.4 on 8 degrees of freedom
    Multiple R-squared:  0.534, Adjusted R-squared:  0.476 
    F-statistic: 9.16 on 1 and 8 DF,  p-value: 0.0164

    剔除变量,只剩x2后,由输出结果可看出,t检验是显著的。但是模型的拟合优度却降低了。

  6. 进行逐步回归

    Start:  AIC=65.98
    y ~ x1 + x2 + x3
    
           Df Sum of Sq  RSS  AIC
    <none>              3297 66.0
    - x3    1       762 4059 66.1
    - x1    1      2072 5369 68.9
    - x2    1      3340 6637 71.0
    
    Call:
    lm(formula = y ~ x1 + x2 + x3, data = data)
    
    Coefficients:
    (Intercept)           x1           x2           x3  
        -348.28         3.75         7.10        12.45  

    逐步回归法结果认为应该保留变量x1,x2,x3。模型为

    \[ \widehat{y} =-348.28+3.75\times x1+7.1\times x2+12.45\times x3\]