广义线性模型

1 广义线性模型

1.1 Logisitic回归:妊娠糖尿病分析

  • 因变量:糖尿病(Diabetes){阳性:pos,阴性:neg},设阳性为1、阴性为0

  • 自变量:年龄(Age)、体重指数(BMI,kg/m2 )、血糖浓度(Glucose )、舒张压(Diastolic blood pressure,(mm)Hg )、怀孕次数(Number of times pregnant )

  • 数据文件:diabetes.csv,共 724个观察值

1.1.1 划分训练集和测试集

  • 前450条个案为训练集,用于估计Logist模型
  • 后274条个案为测试集,用于评价模型的估计效果
  • 训练集糖尿病率36.44%,测试集糖尿病率为31.02%,两者大致相等。

1.1.2 训练集估计回归方程

term estimate std.error statistic p.value
(Intercept) -7.950 0.97 -8.21 0.00
Age 0.012 0.01 1.00 0.32
BMI 0.089 0.02 4.81 0.00
Glucose 0.032 0.00 7.39 0.00
Pressure -0.005 0.01 -0.50 0.61
Pregnant 0.098 0.04 2.45 0.01

\[ log(\frac{p}{1-p}) =-7.95+0.012\times Age+0.089\times BMI+0.032\times Glucose-0.005\times Pressure+0.098\times Pregnant\]

1.1.3 测试集预测效果评价

pos_pred neg_pred
pos 53 32
neg 21 168

回归方程的AIC值为461.36,由训练集预测混淆矩阵可知:

  • 准确率(accuracy):80.66%
  • 精确率(precision):62.35%
  • 召回率(recall):71.62%
  • \(F_1\)得分(\(F_1\) score):66.67%

1.1.4 回归模型边际效应

     Age      BMI  Glucose Pressure Pregnant 
    0.26     1.94     0.70    -0.11     2.14 
  • 年龄每增加一岁患病风险提高0.26%;体重指数每增加1患病风险提高1.94%;血糖浓度每增加1患病风险提高0.7%;舒张压每增加1患病风险降低0.11%;怀孕次数每增加一次患病风险提高2.14%。

  • 体重指数、血糖浓度、怀孕次数对患病风险呈正向影响,符合预期。

  • 年龄和舒张压对患病风险影响小且不显著,考虑逐步回归选择更合适的模型

1.2 Logisitic回归逐步回归

1.2.1 逐步回归的回归方程

1.2.2 逐步回归的预测效果

1.2.3 逐步回归的边际效应