library(ggplot2)
#getwd()
#list.files()
melb_wage_data <- read.csv("Wages2024New.csv")
print(melb_wage_data)
## Date Wages Date.1 Rent
## 1 May-12 1.000000 Mar-12 1.0000000
## 2 Nov-12 2.532486 Jun-12 0.4734694
## 3 May-13 4.657118 Sep-12 0.4081633
## 4 Nov-13 5.719435 Dec-12 0.8163265
## 5 May-14 6.468747 Mar-13 0.8163265
## 6 Nov-14 7.085270 Jun-13 1.5020408
## 7 May-15 7.815612 Sep-13 1.9918367
## 8 Nov-15 8.773594 Dec-13 2.1632653
## 9 May-16 9.921275 Mar-14 1.7551020
## 10 Nov-16 10.547283 Jun-14 2.1224490
## 11 May-17 11.751873 Sep-14 2.5306122
## 12 Nov-17 13.051314 Dec-14 3.5510204
## 13 May-18 14.549938 Mar-15 4.1632653
## 14 Nov-18 16.143413 Jun-15 4.0408163
## 15 May-19 17.528218 Sep-15 4.4081633
## 16 Nov-19 19.112207 Dec-15 5.3061224
## 17 May-20 20.269373 Mar-16 7.5102041
## 18 Nov-20 21.587783 Jun-16 7.5102041
## 19 May-21 23.807265 Sep-16 7.7142857
## 20 Nov-21 25.922413 Dec-16 9.6326531
## 21 May-22 27.800436 Mar-17 10.4489796
## 22 Nov-22 30.522622 Mar-17 11.1836735
## 23 May-23 32.846438 Sep-17 12.8979592
## 24 Nov-23 36.071327 Dec-17 14.9387755
## 25 May-24 40.292137 Mar-18 16.0816326
## 26 NA Jun-18 16.0816326
## 27 NA Sep-18 16.0816326
## 28 NA Dec-18 16.0816326
## 29 NA Mar-19 17.5510204
## 30 NA Jun-19 17.5510204
## 31 NA Sep-19 19.0204082
## 32 NA Dec-19 19.1836735
## 33 NA Mar-20 19.6734694
## 34 NA Jun-20 17.5510204
## 35 NA Sep-20 12.6530612
## 36 NA Dec-20 5.6326531
## 37 NA Mar-21 0.1632653
## 38 NA Jun-21 -2.1224490
## 39 NA Sep-21 -3.1020408
## 40 NA Dec-21 -3.5918367
## 41 NA Mar-22 0.3265306
## 42 NA Jun-22 3.9918367
## 43 NA Sep-22 8.0816327
## 44 NA Dec-22 11.9183674
## 45 NA Mar-23 21.3061225
## 46 NA Jun-23 27.5102041
## 47 NA Sep-23 32.2448980
## 48 NA Dec-23 38.0408163
## 49 NA Mar-24 41.7142857
## 50 NA Jun-24 44.3265306
#head(rent_data$Date)
#rent_data$Date <- as.Date(rent_data$Date, format = "%d/%m/%Y")
melb_wage_data$Date <- as.Date(paste0("01-", melb_wage_data$Date), format = "%d-%b-%y")
melb_wage_data$Date.1 <- as.Date(paste0("01-", melb_wage_data$Date.1), format = "%d-%b-%y")
#rent_data$Date <- as.Date(rent_data$Date, format = "%b-%y")
#print(rent_data)
#head(rent_data$Date)
#head(rent_data$Date)
#tail(rent_data$Date)
#p0 <- ggplot(data = melb_rent_data, aes(x = Date, y = Inner.Melb))
p3 <- ggplot(data = melb_wage_data) +
geom_point(aes(x = Date, y = Wages)) +
geom_point(aes(x = Date.1, y = Rent)) +
theme_minimal()
#p0 <- p0 + ggplot(data = melb_rent_data, aes(x = Date, y = Inner.East)) + geom_point()
#p0 <- p0 + geom_point()
print(p3)
## Warning: Removed 25 rows containing missing values or values outside the scale range
## (`geom_point()`).