Import Data

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ Using correlationfunnel? ════════════════════════════════════════════════════
## You might also be interested in applied data science training for business.
## </> Learn more at - www.business-science.io </>
data <-readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl  (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl  (6): hired, success, solo, oxygen_used, died, injured
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

skimr::skim(data)
Data summary
Name data
Number of rows 76519
Number of columns 21
_______________________
Column type frequency:
character 10
logical 6
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
expedition_id 0 1.00 9 9 0 10350 0
member_id 0 1.00 12 12 0 76518 0
peak_id 0 1.00 4 4 0 391 0
peak_name 15 1.00 4 25 0 390 0
season 0 1.00 6 7 0 5 0
sex 2 1.00 1 1 0 2 0
citizenship 10 1.00 2 23 0 212 0
expedition_role 21 1.00 4 25 0 524 0
death_cause 75413 0.01 3 27 0 12 0
injury_type 74807 0.02 3 27 0 11 0

Variable type: logical

skim_variable n_missing complete_rate mean count
hired 0 1 0.21 FAL: 60788, TRU: 15731
success 0 1 0.38 FAL: 47320, TRU: 29199
solo 0 1 0.00 FAL: 76398, TRU: 121
oxygen_used 0 1 0.24 FAL: 58286, TRU: 18233
died 0 1 0.01 FAL: 75413, TRU: 1106
injured 0 1 0.02 FAL: 74806, TRU: 1713

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1.00 2000.36 14.78 1905 1991 2004 2012 2019 ▁▁▁▃▇
age 3497 0.95 37.33 10.40 7 29 36 44 85 ▁▇▅▁▁
highpoint_metres 21833 0.71 7470.68 1040.06 3800 6700 7400 8400 8850 ▁▁▆▃▇
death_height_metres 75451 0.01 6592.85 1308.19 400 5800 6600 7550 8830 ▁▁▂▇▆
injury_height_metres 75510 0.01 7049.91 1214.24 400 6200 7100 8000 8880 ▁▁▂▇▇
data_clean <- data %>%
    
    # Logical variables 
    mutate(across(is.logical, as.factor)) %>%
    
    # Missing values 
    select(-death_cause, -injury_type, -death_height_metres, -injury_height_metres, -peak_id) %>%
    na.omit() %>% 
    
    # Duplicate values 
    filter(member_id !="KANG10101-01") %>%
    
    # Recode died
    mutate(died = case_when(died == "TRUE" ~ "died", died == "FALSE" ~ "no"))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `across(is.logical, as.factor)`.
## Caused by warning:
## ! Use of bare predicate functions was deprecated in tidyselect 1.1.0.
## ℹ Please use wrap predicates in `where()` instead.
##   # Was:
##   data %>% select(is.logical)
## 
##   # Now:
##   data %>% select(where(is.logical))

Explore Data

data_clean %>% count(died)
## # A tibble: 2 × 2
##   died      n
##   <chr> <int>
## 1 died    744
## 2 no    51639

Died

data_clean %>%
    ggplot(aes(died)) +
    geom_bar()

Deaths vs. Highest point reached

data_clean %>%
    ggplot(aes(died, highpoint_metres)) +
    geom_boxplot()

Deaths vs. Age

data_clean %>%
    ggplot(aes(died, age)) +
    geom_boxplot()

Correlation Plot

# Step 1: Binarize
data_binarized <- data_clean %>%
    select(-member_id) %>%
    binarize()

data_binarized %>% glimpse()
## Rows: 52,383
## Columns: 69
## $ expedition_id__HIML13308       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_id__-OTHER`        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_name__Ama_Dablam          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_name__Annapurna_I         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Baruntse            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Cho_Oyu             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Dhaulagiri_I        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Everest             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Himlung_Himal       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Kangchenjunga       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Lhotse              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Makalu              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Manaslu             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Pumori              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `peak_name__-OTHER`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `year__-Inf_1997`              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ year__1997_2007                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2007_2012                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2012_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ season__Autumn                 <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ season__Spring                 <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ season__Winter                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `season__-OTHER`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__F                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__M                         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `age__-Inf_29`                 <dbl> 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, …
## $ age__29_36                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, …
## $ age__36_43                     <dbl> 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, …
## $ age__43_Inf                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Australia         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Austria           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Canada            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__China             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__France            <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Germany           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__India             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Italy             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Japan             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Nepal             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__New_Zealand       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Poland            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Russia            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__S_Korea           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Spain             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Switzerland       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__UK                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__USA               <dbl> 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ `citizenship__-OTHER`          <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Climber       <dbl> 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, …
## $ expedition_role__Deputy_Leader <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__H-A_Worker`  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Leader        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__-OTHER`      <dbl> 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, …
## $ hired__FALSE                   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ hired__TRUE                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `highpoint_metres__-Inf_6750`  <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ highpoint_metres__6750_7400    <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ highpoint_metres__7400_8450    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ highpoint_metres__8450_Inf     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ success__FALSE                 <dbl> 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ success__TRUE                  <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ solo__FALSE                    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `solo__-OTHER`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ oxygen_used__FALSE             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ oxygen_used__TRUE              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ died__died                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ died__no                       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ injured__FALSE                 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ injured__TRUE                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# Step 2: Correlation
data_correlation <- data_binarized %>%
    correlate(died__died)
## Warning: correlate(): [Data Imbalance Detected] Consider sampling to balance the classes more than 5%
##   Column with imbalance: died__died
data_correlation
## # A tibble: 69 × 3
##    feature         bin          correlation
##    <fct>           <chr>              <dbl>
##  1 died            died              1     
##  2 died            no               -1     
##  3 year            -Inf_1997         0.0843
##  4 success         FALSE             0.0562
##  5 success         TRUE             -0.0562
##  6 peak_name       Annapurna_I       0.0431
##  7 year            2012_Inf         -0.0330
##  8 peak_name       Ama_Dablam       -0.0323
##  9 peak_name       Dhaulagiri_I      0.0315
## 10 expedition_role H-A_Worker       -0.0309
## # ℹ 59 more rows
# Step 3: Plot
data_correlation %>%
    correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 32 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Model Building

Split Data

library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.6      ✔ rsample      1.2.1 
## ✔ dials        1.3.0      ✔ tune         1.2.1 
## ✔ infer        1.0.7      ✔ workflows    1.1.4 
## ✔ modeldata    1.4.0      ✔ workflowsets 1.1.0 
## ✔ parsnip      1.2.1      ✔ yardstick    1.3.1 
## ✔ recipes      1.0.10
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
set.seed(1234)
#data_clean <- data_clean %>% group_by(died) %>% sample_n(50) %>% ungroup()

data_split <- initial_split(data_clean, strata = died)
data_train <- training(data_split)
data_test <- testing(data_split)

data_cv <- rsample::vfold_cv(data_train, strata = died)
data_cv
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits               id    
##    <list>               <chr> 
##  1 <split [35358/3929]> Fold01
##  2 <split [35358/3929]> Fold02
##  3 <split [35358/3929]> Fold03
##  4 <split [35358/3929]> Fold04
##  5 <split [35358/3929]> Fold05
##  6 <split [35358/3929]> Fold06
##  7 <split [35358/3929]> Fold07
##  8 <split [35359/3928]> Fold08
##  9 <split [35359/3928]> Fold09
## 10 <split [35359/3928]> Fold10

Preprocess Data

library(themis)

xgboost_rec <- recipes::recipe(died ~ ., data = data_train) %>%
    update_role(member_id, new_role = "ID") %>%
    step_other(citizenship, expedition_role, expedition_id) %>%
    step_dummy(all_nominal_predictors()) %>%
    step_YeoJohnson(year) %>%
    step_normalize(all_numeric_predictors()) %>%
    step_smote()
    

xgboost_rec %>% prep() %>% juice() %>% glimpse()
## Rows: 39,287
## Columns: 399
## $ member_id                           <fct> AMAD78301-02, AMAD78301-04, AMAD78…
## $ year                                <dbl> -1.914587, -1.914587, -1.914587, -…
## $ age                                 <dbl> 0.38170212, 0.28353551, -0.7962971…
## $ highpoint_metres                    <dbl> -1.426945, -1.426945, -1.426945, -…
## $ died                                <fct> no, no, no, no, no, no, no, no, no…
## $ expedition_id_other                 <dbl> 0.03910908, 0.03910908, 0.03910908…
## $ peak_name_Ama.Dablam                <dbl> 2.61863, 2.61863, 2.61863, 2.61863…
## $ peak_name_Amotsang                  <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Amphu.Gyabjen             <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Amphu.I                   <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Amphu.Middle              <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Anidesh.Chuli             <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Annapurna.I               <dbl> -0.1383618, -0.1383618, -0.1383618…
## $ peak_name_Annapurna.I.East          <dbl> -0.0257336, -0.0257336, -0.0257336…
## $ peak_name_Annapurna.I.Middle        <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Annapurna.II              <dbl> -0.04163904, -0.04163904, -0.04163…
## $ peak_name_Annapurna.III             <dbl> -0.0457331, -0.0457331, -0.0457331…
## $ peak_name_Annapurna.IV              <dbl> -0.08801348, -0.08801348, -0.08801…
## $ peak_name_Annapurna.South           <dbl> -0.04254926, -0.04254926, -0.04254…
## $ peak_name_Api.Main                  <dbl> -0.02986054, -0.02986054, -0.02986…
## $ peak_name_Arniko.Chuli              <dbl> -0.02810103, -0.02810103, -0.02810…
## $ peak_name_Bamongo                   <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Baruntse                  <dbl> -0.1713795, -0.1713795, -0.1713795…
## $ peak_name_Baudha                    <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Beding.Go                 <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Bhairab.Takura            <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Bhemdang.Ri               <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Bhrikuti                  <dbl> -0.03533777, -0.03533777, -0.03533…
## $ peak_name_Bhrikuti.Shail            <dbl> -0.0302845, -0.0302845, -0.0302845…
## $ peak_name_Bhulu.Lhasa               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Bijora.Hiunchuli          <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Bobaye                    <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Boktoh                    <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Burke.Kang                <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Chago                     <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Chako                     <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Chamar.Kang               <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Chamar.North              <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Chamlang                  <dbl> -0.03605265, -0.03605265, -0.03605…
## $ peak_name_Chandi.Himal              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Changla                   <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Changtse                  <dbl> -0.03192429, -0.03192429, -0.03192…
## $ peak_name_Changwathang              <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Chaw.Peak                 <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Chekigo                   <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Cheo.Himal                <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Chhiv.Himal               <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Chhochenphu.Himal         <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Chhopa.Bamare             <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Chhuboche                 <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Chhukung.Ri               <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Chhukung.Tse              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Cho.Oyu                   <dbl> -0.3827439, -0.3827439, -0.3827439…
## $ peak_name_Cho.Polu                  <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Chobuje                   <dbl> -0.02080599, -0.02080599, -0.02080…
## $ peak_name_Cholatse                  <dbl> -0.03569699, -0.03569699, -0.03569…
## $ peak_name_Chukyima.Go               <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Chulu.Central             <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Chulu.West                <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Churen.Himal.Central      <dbl> -0.02312575, -0.02312575, -0.02312…
## $ peak_name_Churen.Himal.East         <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Churen.Himal.West         <dbl> -0.02855104, -0.02855104, -0.02855…
## $ peak_name_Danga                     <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Danphe.Shail              <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Dhampus                   <dbl> -0.03845075, -0.03845075, -0.03845…
## $ peak_name_Dhaulagiri.I              <dbl> -0.1780326, -0.1780326, -0.1780326…
## $ peak_name_Dhaulagiri.II             <dbl> -0.03497487, -0.03497487, -0.03497…
## $ peak_name_Dhaulagiri.III            <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Dhaulagiri.IV             <dbl> -0.02943049, -0.02943049, -0.02943…
## $ peak_name_Dhaulagiri.V              <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Dhaulagiri.VI             <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Dhechyan.Khang            <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Dingjung.North            <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Dingjung.Ri               <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Dolma.Khang               <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Dome.Kang                 <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Domo                      <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Dorje.Lhakpa              <dbl> -0.04949222, -0.04949222, -0.04949…
## $ peak_name_Dragmorpa.Ri              <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Drangnag.Ri               <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Drohmo                    <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Dudh.Kundali              <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Dzanye                    <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Dzanye.II                 <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Dzasampatse               <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Everest                   <dbl> -0.6618305, -0.6618305, -0.6618305…
## $ peak_name_Fang                      <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Firnkopf                  <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Firnkopf.West             <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Futi.Himal                <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Gama.Peak                 <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Ganchenpo                 <dbl> -0.03070262, -0.03070262, -0.03070…
## $ peak_name_Gandharva.Chuli           <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Ganesh.I                  <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Ganesh.II                 <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Ganesh.III                <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Ganesh.IV                 <dbl> -0.02717874, -0.02717874, -0.02717…
## $ peak_name_Ganesh.V                  <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Ganesh.VI                 <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Gangapurna                <dbl> -0.04545281, -0.04545281, -0.04545…
## $ peak_name_Gangapurna.West           <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Gaugiri                   <dbl> -0.01819339, -0.01819339, -0.01819…
## $ peak_name_Gaurishankar              <dbl> -0.04163904, -0.04163904, -0.04163…
## $ peak_name_Gaurishankar.South        <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Gave.Ding                 <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Ghenge.Liru               <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Ghhanyala.Hies            <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Ghustang.North            <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Ghustang.South            <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Ghyuthumba.Main           <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Gimmigela.Chuli           <dbl> -0.02810103, -0.02810103, -0.02810…
## $ peak_name_Gimmigela.Chuli.East      <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Glacier.Dome              <dbl> -0.03975656, -0.03975656, -0.03975…
## $ peak_name_Gojung                    <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Gorakh.Himal              <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Gorakh.Khang              <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Gurja.Himal               <dbl> -0.02899409, -0.02899409, -0.02899…
## $ peak_name_Gurkarpo.Ri               <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Gyachung.Kang             <dbl> -0.03111516, -0.03111516, -0.03111…
## $ peak_name_Gyajikang                 <dbl> -0.05026151, -0.05026151, -0.05026…
## $ peak_name_Gyalzen.Peak              <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Himalchuli.East           <dbl> -0.04344055, -0.04344055, -0.04344…
## $ peak_name_Himalchuli.North          <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Himalchuli.West           <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Himjung                   <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Himlung.East              <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Himlung.Himal             <dbl> -0.1461832, -0.1461832, -0.1461832…
## $ peak_name_Hiunchuli                 <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Hongde                    <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Hongku                    <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Hongku.Chuli              <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Hungchhi                  <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Hunku                     <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Imjatse                   <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Jabou.Ri                  <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Jagdula                   <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Janak.Chuli               <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Jannu                     <dbl> -0.06232088, -0.06232088, -0.06232…
## $ peak_name_Jannu.East                <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Jasemba.Goth              <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Jethi.Bahurani            <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Jinjang                   <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Jobo.Rinjang              <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Jomsom.Himal              <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Jongsang                  <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Kabru.Dome                <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Kabru.Main                <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Kabru.North               <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Kabru.South               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Kagmara.I                 <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Kali.Himal                <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Kande.Hiunchuli           <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Kande.Hiunchuli.North..I  <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Kande.Hiunchuli.North..II <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Kang.Guru                 <dbl> -0.05394528, -0.05394528, -0.05394…
## $ peak_name_Kang.Kuru                 <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Kang.Nagchugo             <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Kangbachen                <dbl> -0.0302845, -0.0302845, -0.0302845…
## $ peak_name_Kangchenjunga             <dbl> -0.135954, -0.135954, -0.135954, -…
## $ peak_name_Kangchenjunga.Central     <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Kangchenjunga.South       <dbl> -0.02764372, -0.02764372, -0.02764…
## $ peak_name_Kangchung.Nup             <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Kangchung.Shar            <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Kangtega                  <dbl> -0.04344055, -0.04344055, -0.04344…
## $ peak_name_Kangtokal                 <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Kangtsune                 <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Kanjeralwa                <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Kanjiroba.North           <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Kanjiroba.South           <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Kanta.Gaton               <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Kanti.Himal               <dbl> -0.01819339, -0.01819339, -0.01819…
## $ peak_name_Kaptang                   <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Karsang.Kang              <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Karyolung                 <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Khamjung                  <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Khangri.Shar              <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Khatang                   <dbl> -0.0257336, -0.0257336, -0.0257336…
## $ peak_name_Khatung.Khang             <dbl> -0.02312575, -0.02312575, -0.02312…
## $ peak_name_Khumbutse                 <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Kimshung                  <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Kirat.Chuli               <dbl> -0.02256813, -0.02256813, -0.02256…
## $ peak_name_Kojichuwa.Chuli           <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Korlang.Pari.Tippa        <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Kotang                    <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Kusum.Kanguru             <dbl> -0.03386298, -0.03386298, -0.03386…
## $ peak_name_Kwangde                   <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Kyashar                   <dbl> -0.02256813, -0.02256813, -0.02256…
## $ peak_name_Kyazo.Ri                  <dbl> -0.02367026, -0.02367026, -0.02367…
## $ peak_name_Kyungka.Ri.1              <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Lachama.Chuli             <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Lachama.North             <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Lamjung.Himal             <dbl> -0.02717874, -0.02717874, -0.02717…
## $ peak_name_Langdak                   <dbl> -0.02312575, -0.02312575, -0.02312…
## $ peak_name_Langdung                  <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Langju                    <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Langmoche.Ri              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Langpo                    <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Langshisa.Ri              <dbl> -0.03111516, -0.03111516, -0.03111…
## $ peak_name_Langtang.Lirung           <dbl> -0.05717204, -0.05717204, -0.05717…
## $ peak_name_Langtang.Ri               <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Langtang.Yubra            <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Larkya.Peak               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Lashar.II                 <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Leonpo.Gang               <dbl> -0.02472341, -0.02472341, -0.02472…
## $ peak_name_Leonpo.Gang.East          <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Lha.Shamma                <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Lhayul.Peak               <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Lhonak                    <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Lhotse                    <dbl> -0.1728688, -0.1728688, -0.1728688…
## $ peak_name_Lhotse.Middle             <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Lhotse.Shar               <dbl> -0.04764941, -0.04764941, -0.04764…
## $ peak_name_Lingtren                  <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Linkhu.Chuli.Nup          <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Linkhu.Chuli.Shar         <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Lobuje.East               <dbl> -0.02523354, -0.02523354, -0.02523…
## $ peak_name_Lobuje.West               <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Lugula                    <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Lunag.II                  <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Lunag.Ri                  <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Lunag.West                <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Lunchhung.Kamo.East       <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Machhapuchhare            <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Makalu                    <dbl> -0.1812036, -0.1812036, -0.1812036…
## $ peak_name_Makalu.II                 <dbl> -0.05626876, -0.05626876, -0.05626…
## $ peak_name_Malanphulan               <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Manapathi                 <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Manapathi.NW              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Manaslu                   <dbl> -0.2667035, -0.2667035, -0.2667035…
## $ peak_name_Manaslu.North             <dbl> -0.02899409, -0.02899409, -0.02899…
## $ peak_name_Mansail                   <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Mardi.Himal               <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Matathumba                <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Mera.Peak                 <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Merra                     <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Mojca                     <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Mukut.Himal               <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Mustang.Himal             <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Mustang.Peak              <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Myagdi.Matha              <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Nagoru                    <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Nalakankar.North          <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Nalakankar.South          <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Nampa                     <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Nangamari.I               <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Nangamari.II              <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Nangpai.Gosum.I           <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Nangpai.Gosum.II          <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Narphu                    <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Naulekh                   <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Nemjung                   <dbl> -0.03152231, -0.03152231, -0.03152…
## $ peak_name_Nepal.Peak                <dbl> -0.02367026, -0.02367026, -0.02367…
## $ peak_name_Ngojumba.Kang.I           <dbl> -0.01819339, -0.01819339, -0.01819…
## $ peak_name_Ngojumba.Kang.II          <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Nilgiri.Central           <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Nilgiri.North             <dbl> -0.03232129, -0.03232129, -0.03232…
## $ peak_name_Nilgiri.South             <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Nirekha                   <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Norbu.Kang                <dbl> -0.02523354, -0.02523354, -0.02523…
## $ peak_name_Numbur                    <dbl> -0.03460819, -0.03460819, -0.03460…
## $ peak_name_Numri                     <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Nup.La.Kang               <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Nupche.Kang               <dbl> -0.02080599, -0.02080599, -0.02080…
## $ peak_name_Nupchu                    <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Nuptse                    <dbl> -0.05893761, -0.05893761, -0.05893…
## $ peak_name_Nuptse.East.I             <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Nuptse.West.II            <dbl> -0.02622414, -0.02622414, -0.02622…
## $ peak_name_Ohmi.Kangri               <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Ombak.Himal               <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Ombigaichen               <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Omitso.Go                 <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Pabuk.Kang                <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Paldor                    <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Palung                    <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Panalotapa                <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Panbari                   <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Pandra                    <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Pangbuk.North             <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Pangbuk.Ri                <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Pankar.Himal              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Panpoche.1                <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Parchamo                  <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Pasang.Lhamu.Chuli        <dbl> -0.0257336, -0.0257336, -0.0257336…
## $ peak_name_Patrasi.Himal             <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Pawar.Central             <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Peak.29                   <dbl> -0.0327135, -0.0327135, -0.0327135…
## $ peak_name_Peak.4                    <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Peak.41                   <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Pemthang.Karpo.Ri         <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Peri                      <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Pethangtse                <dbl> -0.02256813, -0.02256813, -0.02256…
## $ peak_name_Pethangtse.East           <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Pharilapcha               <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Phu.Kang.Go               <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Phungi.Himal              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Phurbi.Chhyachu           <dbl> -0.01819339, -0.01819339, -0.01819…
## $ peak_name_Pimu                      <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Pisang                    <dbl> -0.01673506, -0.01673506, -0.01673…
## $ peak_name_Pointed.Peak              <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Pokalde                   <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Pokharkang                <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Pota.Himal.North          <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Pumori                    <dbl> -0.1514547, -0.1514547, -0.1514547…
## $ peak_name_Punchen.Himal             <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Purbung.Himal             <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Purkhung                  <dbl> -0.02256813, -0.02256813, -0.02256…
## $ peak_name_Putha.Hiunchuli           <dbl> -0.0998714, -0.0998714, -0.0998714…
## $ peak_name_Pyramid.Peak              <dbl> -0.02523354, -0.02523354, -0.02523…
## $ peak_name_Raksha.Urai               <dbl> -0.02140946, -0.02140946, -0.02140…
## $ peak_name_Ramdung                   <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Ramtang                   <dbl> -0.02523354, -0.02523354, -0.02523…
## $ peak_name_Ramtang.Chang             <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Rani.Peak                 <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Rathong                   <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Ratna.Chuli               <dbl> -0.04194462, -0.04194462, -0.04194…
## $ peak_name_Raungsiyar                <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Ripimo.Shar               <dbl> -0.01747942, -0.01747942, -0.01747…
## $ peak_name_Roc.Noir                  <dbl> -0.0257336, -0.0257336, -0.0257336…
## $ peak_name_Rokapi                    <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Rolmi                     <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Rolwaling.Kang            <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Roma                      <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Saipal                    <dbl> -0.03497487, -0.03497487, -0.03497…
## $ peak_name_Saipal.East.Humla         <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Saldim.West               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Samdo                     <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Sano.Kailash              <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Saribung                  <dbl> -0.04488701, -0.04488701, -0.04488…
## $ peak_name_Serku.Dolma               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Shalbachum                <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Sharphu.I                 <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Sharphu.II                <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Sharphu.IV                <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Shartse                   <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Shartse.II                <dbl> -0.01595605, -0.01595605, -0.01595…
## $ peak_name_Shershon.Northwest        <dbl> -0.0257336, -0.0257336, -0.0257336…
## $ peak_name_Shey.Shikhar              <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Simnang.Himal             <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Singu.Chuli               <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Sisne.Himal               <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Sita.Chuchura             <dbl> -0.01888041, -0.01888041, -0.01888…
## $ peak_name_Sphinx                    <dbl> -0.02312575, -0.02312575, -0.02312…
## $ peak_name_Swaksa.Kang               <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Swelokhan                 <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Syaokang                  <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Takargo                   <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Takargo.East              <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Takphu.Himal              <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Takphu.North              <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Talung                    <dbl> -0.02523354, -0.02523354, -0.02523…
## $ peak_name_Taple.Shikhar             <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Tarke.Kang.Shar           <dbl> -0.02080599, -0.02080599, -0.02080…
## $ peak_name_Tashi.Kang                <dbl> -0.0302845, -0.0302845, -0.0302845…
## $ peak_name_Tawa                      <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Tawoche                   <dbl> -0.03778103, -0.03778103, -0.03778…
## $ peak_name_Tengi.Ragi.Tau            <dbl> -0.02018452, -0.02018452, -0.02018…
## $ peak_name_Tengkangpoche             <dbl> -0.03386298, -0.03386298, -0.03386…
## $ peak_name_Tengkoma                  <dbl> -0.02764372, -0.02764372, -0.02764…
## $ peak_name_Thamserku                 <dbl> -0.02717874, -0.02717874, -0.02717…
## $ peak_name_Tharke.Kang               <dbl> -0.01128191, -0.01128191, -0.01128…
## $ peak_name_Tharpu.Chuli              <dbl> -0.01009072, -0.01009072, -0.01009…
## $ peak_name_Thorong.Peak              <dbl> -0.01427116, -0.01427116, -0.01427…
## $ peak_name_Thulagi                   <dbl> -0.01954333, -0.01954333, -0.01954…
## $ peak_name_Til.Kang                  <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Tilicho                   <dbl> -0.08082657, -0.08082657, -0.08082…
## $ peak_name_Tobsar                    <dbl> -0.02717874, -0.02717874, -0.02717…
## $ peak_name_Tongu                     <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Triangle.Peak             <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Tripura.Hiunchuli         <dbl> -0.01513704, -0.01513704, -0.01513…
## $ peak_name_Tsartse                   <dbl> -0.02080599, -0.02080599, -0.02080…
## $ peak_name_Tsaurabong.Peak           <dbl> -0.02256813, -0.02256813, -0.02256…
## $ peak_name_Tsisima                   <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Tso.Karpo.Kang            <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Tukuche                   <dbl> -0.07153084, -0.07153084, -0.07153…
## $ peak_name_Tutse                     <dbl> -0.008738708, -0.008738708, -0.008…
## $ peak_name_Urkema                    <dbl> -0.03232129, -0.03232129, -0.03232…
## $ peak_name_Urkinmang                 <dbl> -0.02199641, -0.02199641, -0.02199…
## $ peak_name_Yakawa.Kang               <dbl> -0.01235887, -0.01235887, -0.01235…
## $ peak_name_Yala.Chuli                <dbl> -0.007135035, -0.007135035, -0.007…
## $ peak_name_Yalung.Kang               <dbl> -0.04373364, -0.04373364, -0.04373…
## $ peak_name_Yanme.Kang                <dbl> -0.005045167, -0.005045167, -0.005…
## $ peak_name_Yansa.Tsenji              <dbl> -0.01334928, -0.01334928, -0.01334…
## $ peak_name_Yaupa                     <dbl> -0.01673506, -0.01673506, -0.01673…
## $ season_Spring                       <dbl> -1.0328792, -1.0328792, -1.0328792…
## $ season_Summer                       <dbl> -0.08548176, -0.08548176, -0.08548…
## $ season_Winter                       <dbl> -0.1538121, -0.1538121, -0.1538121…
## $ sex_M                               <dbl> 0.3112046, 0.3112046, 0.3112046, 0…
## $ citizenship_Japan                   <dbl> -0.2673052, -0.2673052, -0.2673052…
## $ citizenship_Nepal                   <dbl> -0.5682997, -0.5682997, -0.5682997…
## $ citizenship_UK                      <dbl> -0.2736991, -0.2736991, -0.2736991…
## $ citizenship_USA                     <dbl> -0.3070538, -0.3070538, -0.3070538…
## $ citizenship_other                   <dbl> -0.9564663, -0.9564663, -0.9564663…
## $ expedition_role_H.A.Worker          <dbl> -0.543975, -0.543975, -0.543975, -…
## $ expedition_role_Leader              <dbl> -0.4117403, -0.4117403, -0.4117403…
## $ expedition_role_other               <dbl> 3.8499370, 3.8499370, -0.2597379, …
## $ hired_TRUE.                         <dbl> -0.5659087, -0.5659087, -0.5659087…
## $ success_TRUE.                       <dbl> -1.0758306, -1.0758306, -1.0758306…
## $ solo_TRUE.                          <dbl> -0.04601171, -0.04601171, -0.04601…
## $ oxygen_used_TRUE.                   <dbl> -0.7118547, -0.7118547, -0.7118547…
## $ injured_TRUE.                       <dbl> -0.1553656, -0.1553656, -0.1553656…

Specify Model

xgboost_spec <- 
  boost_tree(trees = tune(), tree_depth = tune()) %>% 
  set_mode("classification") %>% 
  set_engine("xgboost") 

xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_rec) %>% 
  add_model(xgboost_spec) 

Tune Hyperparameters

tree_grid <- grid_regular(trees(),
                          tree_depth(),
                          levels = 5)

doParallel::registerDoParallel()

set.seed(68822)
xgboost_tune <-
  tune_grid(xgboost_workflow, 
            resamples = data_cv,
            grid = 5,
            control = control_grid(save_pred = TRUE))

Model Evaluation

Identify optimal values for hyperparameters

collect_metrics(xgboost_tune)
## # A tibble: 15 × 8
##    trees tree_depth .metric     .estimator   mean     n  std_err .config        
##    <int>      <int> <chr>       <chr>       <dbl> <int>    <dbl> <chr>          
##  1   350          9 accuracy    binary     0.985     10 0.000734 Preprocessor1_…
##  2   350          9 brier_class binary     0.0142    10 0.000616 Preprocessor1_…
##  3   350          9 roc_auc     binary     0.757     10 0.00891  Preprocessor1_…
##  4   716          9 accuracy    binary     0.984     10 0.000741 Preprocessor1_…
##  5   716          9 brier_class binary     0.0146    10 0.000622 Preprocessor1_…
##  6   716          9 roc_auc     binary     0.752     10 0.00927  Preprocessor1_…
##  7  1111          3 accuracy    binary     0.986     10 0.000670 Preprocessor1_…
##  8  1111          3 brier_class binary     0.0136    10 0.000560 Preprocessor1_…
##  9  1111          3 roc_auc     binary     0.774     10 0.0116   Preprocessor1_…
## 10  1519          4 accuracy    binary     0.984     10 0.000818 Preprocessor1_…
## 11  1519          4 brier_class binary     0.0144    10 0.000683 Preprocessor1_…
## 12  1519          4 roc_auc     binary     0.745     10 0.0110   Preprocessor1_…
## 13  1815         13 accuracy    binary     0.984     10 0.000816 Preprocessor1_…
## 14  1815         13 brier_class binary     0.0152    10 0.000727 Preprocessor1_…
## 15  1815         13 roc_auc     binary     0.748     10 0.0119   Preprocessor1_…
collect_predictions(xgboost_tune) %>%
    group_by(id) %>%
    roc_curve(died, .pred_died) %>%
    autoplot()

Fit model for the last time

xgboost_last <- xgboost_workflow %>%
    finalize_workflow(select_best(xgboost_tune, metric = "accuracy")) %>%
    last_fit(data_split)
## → A | warning: ! There are new levels in a factor: `Lashar I`, `Kumlung`, and `Ngojumba Kang
##                  III`.
## There were issues with some computations   A: x1There were issues with some computations   A: x1
collect_metrics(xgboost_last)
## # A tibble: 3 × 4
##   .metric     .estimator .estimate .config             
##   <chr>       <chr>          <dbl> <chr>               
## 1 accuracy    binary        0.985  Preprocessor1_Model1
## 2 roc_auc     binary        0.813  Preprocessor1_Model1
## 3 brier_class binary        0.0138 Preprocessor1_Model1
collect_predictions(xgboost_last) %>%
    yardstick::conf_mat(died, .pred_class) %>%
    autoplot()

Variable importance

library(vip)
## 
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
## 
##     vi
xgboost_last %>%
    workflows::extract_fit_engine() %>%
    vip()

Conclusion

The previous model had accuracy value of 0.986, and an AUC value of 0.778 * Featured transformation: normalized numeric data. This did not result in any change. * Featured transformation: YeoJohnson. This did not result in any change. * Featured transformation: PCA. This did not result in any improvement. * Featured transformation: Algorithm tuning. This resulted in an improvement, accuracy became 0.985 and AUC became 0.813