# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NOK", "GOOGL", "GM", "FDX", "AMZN")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
## 2 Convert prices to returns (monthly)
``` r
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "FDX" "GM" "GOOGL" "NOK"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 FDX 0.25
## 3 GM 0.2
## 4 GOOGL 0.2
## 5 NOK 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0466
## 2 2013-02-28 0.00621
## 3 2013-03-28 -0.0229
## 4 2013-04-30 0.00803
## 5 2013-05-31 0.0525
## 6 2013-06-28 0.0209
## 7 2013-07-31 0.0602
## 8 2013-08-30 -0.0349
## 9 2013-09-30 0.111
## 10 2013-10-31 0.126
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.171
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] NA
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AMZN 0.187
## 2 FDX -0.0655
## 3 GM -0.00490
## 4 GOOGL 0.867
## 5 NOK 1.42
## 6 portfolio 0.171
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness") %>%
na.omit()
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Thankfully, none of my asset’s in my portfolio are in the negatives, but all of them for the most part will have good positive returns. Especially Nokia funily enough. Nokia has the possibility to sky rocket if things go right for them. In a close but not so close second we have Google, which has a good skewness just under that 1 mark.