First you will need to get a API key: https://api.census.gov/data/key_signup.html
Once you have an API key load it into your R environment so that you can access the ACS data.
#install.packages("tidycensus")
library(tidycensus)
# YOUR CODE SHOULD LOOK LIKE THIS
# census_api_key("INCLUDE YOUR API HERE")
## To install your API key for use in future sessions, run this function with `install = TRUE`.
Many many variables are included in the ACS. The ACS has 1 and 5 year estimates. Use the following code to see what variables are available.
TASK: Pick a year and look at what estimates are available from the ACS 5-year estimates.
# Set a year of interest
this.year = 2010
# This looks at the 5 year estimates
# You can also do "acs1"
vars <- load_variables(year = this.year,
dataset = "acs5",
cache = TRUE)
# HOW MANY?
dim(vars)
## [1] 20927 3
Explore several possible explantory variables from the American Community Survey (ACS) including:
## EXAMPLE
# MEDIAN HOME VALUE
orMedv <- get_acs(geography = "tract", year=this.year,
state = "OR", #county = "Marion",
variables = "B25077_001E",
geometry=TRUE)
## Getting data from the 2006-2010 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## | | | 0% | |= | 2% | |=== | 4% | |==== | 6% | |====== | 8% | |======= | 10% | |========= | 12% | |============= | 18% | |==================== | 29% | |========================= | 36% | |============================================= | 65% | |======================================================================| 100%
head(orMedv)
## Simple feature collection with 6 features and 5 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -123.0519 ymin: 44.88424 xmax: -122.9323 ymax: 44.99713
## Geodetic CRS: NAD83
## GEOID NAME variable estimate
## 1 41047000900 Census Tract 9, Marion County, Oregon B25077_001 144400
## 2 41047001000 Census Tract 10, Marion County, Oregon B25077_001 108700
## 3 41047001100 Census Tract 11, Marion County, Oregon B25077_001 204800
## 4 41047001402 Census Tract 14.02, Marion County, Oregon B25077_001 197300
## 5 41047001604 Census Tract 16.04, Marion County, Oregon B25077_001 164800
## 6 41047001802 Census Tract 18.02, Marion County, Oregon B25077_001 176700
## moe geometry
## 1 13716 MULTIPOLYGON (((-123.0107 4...
## 2 20327 MULTIPOLYGON (((-123.0308 4...
## 3 10800 MULTIPOLYGON (((-123.0451 4...
## 4 9764 MULTIPOLYGON (((-123.0519 4...
## 5 8120 MULTIPOLYGON (((-122.9904 4...
## 6 8689 MULTIPOLYGON (((-122.9668 4...
TASKS: - Pick a color palette (change it from the one provided) - Change the pop-up text
#install.packages("leaflet")
library(leaflet)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## WHAT TYPE OF COLOR PALETTE?
## Continuous?
pal<-colorNumeric("Greens", domain=0:ceiling(max(orMedv$estimate, na.rm=TRUE)))
## Quantile?
qpal<-colorQuantile("viridis", domain=orMedv$estimate,
n=5,na.color="#FFFFFF")
## CHANGE THE POP-UP TEXT
## TRY ADDING A LINE
popup<-paste("Tract: ", as.character(substring(orMedv$GEOID, 6, 11)), "<br>",
"Median Home Value: ", as.character(orMedv$estimate))
leaflet()%>%
addProviderTiles("CartoDB.Positron")%>%
addPolygons(data=orMedv,
fillColor= ~qpal(orMedv$estimate),
fillOpacity = .7,
weight =.5,
smoothFactor = 0.2,
popup = popup)%>%
addLegend("bottomright", pal=qpal, values=orMedv$estimate,
opacity = .7,
title="Percentiles")
## Warning: sf layer has inconsistent datum (+proj=longlat +datum=NAD83 +no_defs).
## Need '+proj=longlat +datum=WGS84'