OLS, and regularisation techniques (Lasso, Ridge)

I. OLS on High Dimensional Data

Prepare the Workspace

First we prepare the workspace and environment by installing the necessary packages and loading the necessary libraries.

# Clear the workspace
  rm(list = ls()) # Clear environment - remove all files from your workspace
  invisible(gc()) # Clear unused memory
  cat("\f")       # Clear the console
  graphics.off()  # clear all graphs



# Prepare needed libraries
packages <- c("glmnet",   # used for regression
              "caret",    # used for modeling
              "xgboost",  # used for building XGBoost model
              "ISLR",
              "dplyr",     # used for data manipulation and joining
              "tidyselect",
              "stargazer", # presentation of data
              "data.table",# used for reading and manipulation of data
              "ggplot2",   # used for ploting
              "cowplot",   # used for combining multiple plots
              "e1071",     # used for skewness
              "psych",
              "car",
              "modelsummary"
              )

suppressPackageStartupMessages({
  
  for (i in 1:length(packages)) {
    if (!packages[i] %in% rownames(installed.packages())) {
      install.packages(packages[i]
                       , repos = "http://cran.rstudio.com/"
                       , dependencies = TRUE
                       )
    }
    library(packages[i], character.only = TRUE)
  }
  
})  

rm(packages)

set.seed(7)

Load and Explore Data

Then we load the data. My dataset is a High Dimensional Datascape dataset from Kaggle. Source of data here. This dataset was created to work on various techniques like Dimensionality reduction, Statistical Inference and Classification. It contains 230 rows and 537 columns of numerical data including labels. After loading the data, we do basic exploratory data analysis and also define our Y variable. In this example, I’m taking the first variable named X and designating it as my Y variable.

# Clear the workspace by removing all objects from the environment
remove(list=ls())

# Import dataset from Kaggle
data <- read.csv("/Users/ginaocchipinti/Documents/all_data.csv")

# Perform basic data analysis
head(data)
            X         X.1         X.2         X.3         X.4         X.5
1 -0.00013326  0.00026177  0.00109930  0.00183360  0.00210910  0.00222300
2 -0.00084179 -0.00101110 -0.00107070 -0.00094444 -0.00079376 -0.00061009
3 -0.00076610 -0.00053523  0.00016161  0.00089768  0.00128680  0.00158160
4 -0.00030140 -0.00037652 -0.00045118 -0.00052884 -0.00068462 -0.00084503
5 -0.00058928 -0.00085749 -0.00113500 -0.00117120 -0.00112820 -0.00103870
6 -0.00061836 -0.00078283 -0.00088089 -0.00076459 -0.00059269 -0.00036554
          X.6         X.7         X.8         X.9        X.10        X.11
1  0.00223320  0.00203630  0.00158240  0.00096914  0.00027201 -0.00048044
2 -0.00044534 -0.00017306  0.00007750  0.00028453  0.00049583  0.00062854
3  0.00170360  0.00165910  0.00157450  0.00143820  0.00115980  0.00093717
4 -0.00089858 -0.00082181 -0.00054951 -0.00018190  0.00009120  0.00020840
5 -0.00095886 -0.00093714 -0.00091603 -0.00081864 -0.00062252 -0.00047476
6 -0.00020084 -0.00018268 -0.00016466 -0.00010591 -0.00007920 -0.00001280
         X.12        X.13        X.14        X.15        X.16        X.17
1 -0.00121770 -0.00175120 -0.00198260 -0.00209180 -0.00217980 -0.00219580
2  0.00069561  0.00068917  0.00068522  0.00077108  0.00090058  0.00094199
3  0.00080556  0.00062711  0.00046111  0.00043318  0.00052272  0.00061480
4  0.00014393  0.00022127  0.00047499  0.00070157  0.00082037  0.00073683
5 -0.00051196 -0.00051193 -0.00036537 -0.00022168 -0.00015120 -0.00004940
6  0.00006520  0.00010175  0.00005070 -0.00017119 -0.00034275 -0.00026492
         X.18        X.19        X.20        X.21        X.22        X.23
1 -0.00202960 -0.00176480 -0.00147300 -0.00103640 -0.00054025 -0.00016947
2  0.00089828  0.00081587  0.00063259  0.00040408  0.00026423  0.00031014
3  0.00063960  0.00072068  0.00100520  0.00139830  0.00188090  0.00246780
4  0.00035839 -0.00004890 -0.00027253 -0.00033040 -0.00025731 -0.00040996
5  0.00015850  0.00031998  0.00039341  0.00046324  0.00053466  0.00050059
6 -0.00014745 -0.00005820  0.00014415  0.00035082  0.00053736  0.00071923
         X.24        X.25        X.26        X.27        X.28        X.29
1  0.00005910  0.00026648  0.00062167  0.00120140  0.00179360  0.00237180
2  0.00039474  0.00034171  0.00008490 -0.00023610 -0.00043945 -0.00054983
3  0.00294660  0.00315100  0.00327240  0.00349580  0.00371600  0.00374800
4 -0.00068185 -0.00080279 -0.00072780 -0.00054431 -0.00024968  0.00020120
5  0.00033426  0.00014472  0.00006750  0.00007120  0.00006650  0.00021164
6  0.00087065  0.00119370  0.00154230  0.00178930  0.00211910  0.00243720
         X.30        X.31        X.32       X.33       X.34        X.35
1  0.00298010  0.00349990  0.00400800 0.00458960 0.00515390  0.00555030
2 -0.00047230 -0.00029607 -0.00011918 0.00005200 0.00022180  0.00055066
3  0.00341140  0.00273960  0.00190530 0.00098812 0.00014393 -0.00049219
4  0.00058987  0.00090313  0.00127660 0.00177770 0.00233780  0.00282520
5  0.00048058  0.00080564  0.00120840 0.00159600 0.00198050  0.00241720
6  0.00260810  0.00263860  0.00249430 0.00230900 0.00219570  0.00200520
        X.36       X.37        X.38        X.39        X.40        X.41
1  0.0056060  0.0052580  0.00477050  0.00423850  0.00356040  0.00273330
2  0.0011578  0.0019584  0.00283510  0.00375220  0.00445130  0.00497130
3 -0.0010829 -0.0017737 -0.00247190 -0.00305700 -0.00337010 -0.00339460
4  0.0029633  0.0029186  0.00299980  0.00286460  0.00256550  0.00224710
5  0.0027892  0.0030239  0.00318730  0.00311790  0.00278450  0.00230600
6  0.0017165  0.0013131  0.00078292  0.00028413 -0.00015586 -0.00043563
         X.42        X.43        X.44        X.45        X.46        X.47
1  0.00172730  0.00057597 -0.00054831 -0.00150680 -0.00228340 -0.00282630
2  0.00537010  0.00545300  0.00522150  0.00476050  0.00408300  0.00318710
3 -0.00330050 -0.00315480 -0.00302370 -0.00297830 -0.00293030 -0.00278130
4  0.00165610  0.00090622  0.00012259 -0.00063926 -0.00108260 -0.00132560
5  0.00171950  0.00116860  0.00071918  0.00028134 -0.00020008 -0.00072076
6 -0.00053602 -0.00072194 -0.00102570 -0.00135600 -0.00154670 -0.00158610
        X.48        X.49        X.50       X.51       X.52       X.53
1 -0.0032869 -0.00371580 -0.00402040 -0.0041716 -0.0041254 -0.0040071
2  0.0020740  0.00073206 -0.00057749 -0.0017873 -0.0029245 -0.0037521
3 -0.0025435 -0.00230700 -0.00219570 -0.0021632 -0.0021280 -0.0020840
4 -0.0016723 -0.00194580 -0.00211860 -0.0022794 -0.0021760 -0.0018362
5 -0.0012711 -0.00167060 -0.00174140 -0.0016224 -0.0015390 -0.0015265
6 -0.0016951 -0.00181430 -0.00184510 -0.0019345 -0.0020591 -0.0020679
        X.54       X.55       X.56       X.57       X.58       X.59       X.60
1 -0.0039063 -0.0037908 -0.0036169 -0.0034772 -0.0033487 -0.0032101 -0.0030471
2 -0.0042481 -0.0045739 -0.0047876 -0.0049064 -0.0049366 -0.0048187 -0.0045674
3 -0.0019872 -0.0018384 -0.0016760 -0.0015325 -0.0013969 -0.0012721 -0.0011169
4 -0.0015435 -0.0014304 -0.0014866 -0.0015310 -0.0014996 -0.0014529 -0.0013577
5 -0.0016557 -0.0018894 -0.0019334 -0.0017779 -0.0016471 -0.0016200 -0.0017723
6 -0.0020306 -0.0019643 -0.0019770 -0.0019854 -0.0017158 -0.0014350 -0.0013628
         X.61        X.62        X.63        X.64        X.65        X.66
1 -0.00284830 -0.00269710 -0.00249900 -0.00233310 -0.00226960 -0.00217790
2 -0.00420610 -0.00382230 -0.00353290 -0.00333010 -0.00321340 -0.00315380
3 -0.00097346 -0.00084327 -0.00065188 -0.00037290 -0.00002480  0.00020408
4 -0.00130740 -0.00140200 -0.00151810 -0.00147430 -0.00118010 -0.00074210
5 -0.00194140 -0.00190430 -0.00180410 -0.00158650 -0.00121340 -0.00102130
6 -0.00130260 -0.00122890 -0.00111430 -0.00079061 -0.00032622  0.00011954
         X.67        X.68        X.69        X.70        X.71        X.72
1 -0.00198650 -0.00171210 -0.00143110 -0.00123310 -0.00109700 -0.00094757
2 -0.00308310 -0.00291920 -0.00260570 -0.00232080 -0.00217910 -0.00204720
3  0.00033800  0.00049185  0.00069111  0.00088870  0.00104940  0.00117430
4 -0.00044670 -0.00042361 -0.00034819 -0.00016287  0.00010556  0.00058591
5 -0.00101420 -0.00088196 -0.00060676 -0.00025267  0.00005590  0.00023720
6  0.00041842  0.00044127  0.00039135  0.00056201  0.00080999  0.00100670
         X.73        X.74        X.75        X.76        X.77        X.78
1 -0.00076457 -0.00042681  0.00003260  0.00043313  0.00074876  0.00093622
2 -0.00193910 -0.00186640 -0.00168550 -0.00135760 -0.00089756 -0.00044602
3  0.00121160  0.00113700  0.00096434  0.00091412  0.00098353  0.00090526
4  0.00094508  0.00115970  0.00131200  0.00118050  0.00097969  0.00097953
5  0.00039846  0.00045747  0.00035420  0.00030026  0.00039271  0.00041259
6  0.00106100  0.00084981  0.00047963  0.00016526  0.00006050  0.00013514
         X.79       X.80       X.81        X.82        X.83        X.84
1  0.00101770 0.00113000 0.00134600  0.00160790  0.00178800  0.00182230
2 -0.00017839 0.00007320 0.00041863  0.00075043  0.00110790  0.00157560
3  0.00072583 0.00063123 0.00056813  0.00049405  0.00041888  0.00030130
4  0.00086377 0.00060794 0.00038714  0.00001850 -0.00030434 -0.00060471
5  0.00038341 0.00035758 0.00027015  0.00020990  0.00016841  0.00018885
6  0.00023134 0.00019813 0.00004460 -0.00009100 -0.00005640  0.00010347
         X.85        X.86        X.87        X.88        X.89        X.90
1  0.00172970  0.00155520  0.00128940  0.00106350  0.00103430  0.00105330
2  0.00204030  0.00230350  0.00236830  0.00238320  0.00237860  0.00232490
3  0.00019126  0.00001710 -0.00019481 -0.00020069 -0.00012518 -0.00015979
4 -0.00094598 -0.00102190 -0.00093086 -0.00084904 -0.00074712 -0.00064695
5  0.00031403  0.00041294  0.00043576  0.00052937  0.00059650  0.00056625
6  0.00026107  0.00035519  0.00024863  0.00000946 -0.00018890 -0.00029574
         X.91        X.92        X.93        X.94        X.95        X.96
1  0.00091704  0.00063438  0.00036223  0.00015371  0.00000513 -0.00003260
2  0.00223010  0.00208040  0.00191560  0.00168210  0.00134120  0.00108000
3 -0.00014574 -0.00006430 -0.00002630  0.00001200  0.00013425  0.00041411
4 -0.00053475 -0.00035785 -0.00011964  0.00014100  0.00029193  0.00032012
5  0.00055542  0.00050625  0.00052502  0.00059124  0.00058960  0.00066351
6 -0.00024062 -0.00013840 -0.00011565 -0.00012309 -0.00014890 -0.00018338
         X.97       X.98       X.99      X.100      X.101      X.102      X.103
1  0.00006550 0.00021702 0.00022936 0.00017117 0.00016839 0.00022623 0.00031471
2  0.00089967 0.00071230 0.00058410 0.00043179 0.00024346 0.00017580 0.00017884
3  0.00067063 0.00070538 0.00065269 0.00058751 0.00050064 0.00042425 0.00047965
4  0.00037364 0.00054255 0.00084607 0.00114620 0.00125470 0.00115840 0.00088411
5  0.00072631 0.00064397 0.00054792 0.00053538 0.00061998 0.00079372 0.00093058
6 -0.00008180 0.00017628 0.00046969 0.00067288 0.00067056 0.00053469 0.00034557
       X.104      X.105      X.106      X.107      X.108      X.109      X.110
1 0.00042174 0.00054371 0.00058684 0.00055530 0.00047679 0.00045067 0.00046245
2 0.00016818 0.00021239 0.00026452 0.00027891 0.00025888 0.00026990 0.00037591
3 0.00064816 0.00067554 0.00049171 0.00029954 0.00023336 0.00026547 0.00036562
4 0.00064882 0.00063766 0.00071738 0.00073432 0.00057825 0.00030379 0.00000141
5 0.00097877 0.00099434 0.00091567 0.00087872 0.00103250 0.00127660 0.00149120
6 0.00019244 0.00019118 0.00027233 0.00023768 0.00009390 0.00001790 0.00005330
        X.111       X.112       X.113       X.114       X.115       X.116
1  0.00049883  0.00061177  0.00072230  0.00075740  0.00077442  0.00086398
2  0.00049300  0.00056533  0.00058680  0.00064205  0.00067392  0.00066338
3  0.00043141  0.00045836  0.00044899  0.00033632  0.00027041  0.00031328
4 -0.00026816 -0.00031368 -0.00017781 -0.00016316 -0.00024300 -0.00021474
5  0.00156860  0.00146820  0.00118620  0.00085852  0.00060403  0.00035092
6  0.00021305  0.00055622  0.00101450  0.00143750  0.00177050  0.00214820
        X.117       X.118       X.119       X.120       X.121       X.122
1  0.00094984  0.00097313  0.00091232  0.00080529  0.00068477  0.00055950
2  0.00069545  0.00076885  0.00078852  0.00074401  0.00075660  0.00074144
3  0.00036724  0.00041776  0.00037103  0.00025708  0.00019308  0.00017043
4 -0.00008720  0.00006160  0.00019782  0.00046085  0.00090304  0.00133430
5  0.00003370 -0.00038256 -0.00088747 -0.00140770 -0.00189340 -0.00226920
6  0.00263270  0.00305030  0.00325130  0.00319750  0.00304760  0.00283600
        X.123       X.124       X.125       X.126       X.127       X.128
1  0.00046390  0.00038683  0.00027457  0.00012001  0.00005890  0.00016025
2  0.00068355  0.00056074  0.00046843  0.00046009  0.00038877  0.00032617
3  0.00016750  0.00024157  0.00040829  0.00064029  0.00095064  0.00132740
4  0.00178780  0.00231440  0.00269840  0.00279310  0.00265520  0.00255010
5 -0.00242710 -0.00242560 -0.00234730 -0.00212720 -0.00179300 -0.00147760
6  0.00250150  0.00210340  0.00160030  0.00091132  0.00014749 -0.00049277
        X.129       X.130       X.131       X.132       X.133       X.134
1  0.00039811  0.00077358  0.00118690  0.00161940  0.00213430  0.00274100
2  0.00029636  0.00027314  0.00021618  0.00010740  0.00005940  0.00025797
3  0.00188370  0.00249610  0.00303500  0.00349470  0.00379590  0.00394360
4  0.00248140  0.00226920  0.00195910  0.00144020  0.00061599 -0.00024882
5 -0.00122760 -0.00099340 -0.00068345 -0.00034122 -0.00007070  0.00016463
6 -0.00098636 -0.00126920 -0.00153090 -0.00188730 -0.00213100 -0.00219980
        X.135       X.136       X.137      X.138       X.139       X.140
1  0.00342360  0.00411440  0.00471740  0.0051269  0.00533200  0.00527690
2  0.00056612  0.00087353  0.00136750  0.0019310  0.00250660  0.00312520
3  0.00386630  0.00355980  0.00309510  0.0024341  0.00154830  0.00067201
4 -0.00095144 -0.00146780 -0.00175330 -0.0020074 -0.00232520 -0.00257910
5  0.00033823  0.00038066  0.00031682  0.0002513  0.00026865  0.00029923
6 -0.00207370 -0.00194650 -0.00194240 -0.0020066 -0.00216680 -0.00234580
        X.141       X.142      X.143       X.144      X.145       X.146
1  0.00495220  0.00434470  0.0034409  0.00233540  0.0011608 -0.00001250
2  0.00371630  0.00435030  0.0048505  0.00489640  0.0046981  0.00438720
3 -0.00016028 -0.00103330 -0.0018202 -0.00250590 -0.0030098 -0.00327050
4 -0.00273350 -0.00267560 -0.0024528 -0.00231560 -0.0021413 -0.00188010
5  0.00027819  0.00026034  0.0002578  0.00017151  0.0000177 -0.00010716
6 -0.00233880 -0.00215840 -0.0020509 -0.00220970 -0.0025367 -0.00261430
        X.147       X.148       X.149       X.150       X.151       X.152
1 -0.00121750 -0.00230470 -0.00324690 -0.00406830 -0.00458130 -0.00482340
2  0.00377530  0.00289970  0.00183800  0.00069235 -0.00042242 -0.00154600
3 -0.00341810 -0.00348440 -0.00345030 -0.00346790 -0.00348340 -0.00332380
4 -0.00177120 -0.00179250 -0.00179000 -0.00172250 -0.00168740 -0.00167410
5 -0.00017979 -0.00025729 -0.00033428 -0.00030235 -0.00027498 -0.00038732
6 -0.00237390 -0.00210430 -0.00179200 -0.00145380 -0.00120830 -0.00102800
        X.153       X.154       X.155       X.156       X.157       X.158
1 -0.00489920 -0.00480000 -0.00464960 -0.00453290 -0.00437380 -0.00416800
2 -0.00260100 -0.00342190 -0.00408520 -0.00459770 -0.00488800 -0.00494610
3 -0.00314050 -0.00291300 -0.00266030 -0.00257940 -0.00251220 -0.00237920
4 -0.00151510 -0.00107470 -0.00078506 -0.00081770 -0.00080632 -0.00066086
5 -0.00053532 -0.00060557 -0.00058270 -0.00055912 -0.00057112 -0.00049675
6 -0.00082914 -0.00043649  0.00001730  0.00026176  0.00029383  0.00030277
        X.159       X.160       X.161       X.162       X.163       X.164
1 -0.00390640 -0.00354650 -0.00330240 -0.00319740 -0.00311490 -0.00306150
2 -0.00477670 -0.00457320 -0.00442930 -0.00425090 -0.00391330 -0.00343040
3 -0.00224140 -0.00206460 -0.00191770 -0.00186220 -0.00171830 -0.00153130
4 -0.00040744 -0.00018684 -0.00000675  0.00010723  0.00009060 -0.00004670
5 -0.00033781 -0.00029794 -0.00030450 -0.00018192 -0.00004270 -0.00000589
6  0.00046031  0.00063547  0.00065612  0.00053164  0.00036004  0.00023995
        X.165       X.166       X.167       X.168       X.169       X.170
1 -0.00294060 -0.00271610 -0.00246880 -0.00236400 -0.00237830 -0.00242880
2 -0.00302010 -0.00279300 -0.00272120 -0.00274140 -0.00273310 -0.00262230
3 -0.00138510 -0.00117170 -0.00094313 -0.00067126 -0.00037677 -0.00011321
4 -0.00006090  0.00008060  0.00023706  0.00048554  0.00074886  0.00092769
5 -0.00003090  0.00005630  0.00019679  0.00019403  0.00003250 -0.00011604
6  0.00018158  0.00014749  0.00018968  0.00025562  0.00010584 -0.00013331
        X.171       X.172       X.173       X.174       X.175       X.176
1 -0.00237450 -0.00210100 -0.00166460 -0.00114310 -0.00071216 -0.00041092
2 -0.00250410 -0.00241230 -0.00239660 -0.00248830 -0.00255150 -0.00246420
3  0.00015783  0.00044446  0.00064733  0.00075758  0.00090074  0.00107400
4  0.00088774  0.00080352  0.00077208  0.00063095  0.00038028  0.00022761
5 -0.00014001 -0.00015443 -0.00015930 -0.00003570  0.00009830  0.00002460
6 -0.00024341 -0.00023079 -0.00011202 -0.00005130 -0.00002270  0.00006670
        X.177       X.178       X.179       X.180       X.181       X.182
1 -0.00013200  0.00029603  0.00080637  0.00127880  0.00170270  0.00194780
2 -0.00210530 -0.00160270 -0.00125560 -0.00097073 -0.00055213 -0.00008290
3  0.00116880  0.00116910  0.00111870  0.00109430  0.00110390  0.00104750
4  0.00026445  0.00026814  0.00002600 -0.00034766 -0.00050483 -0.00049362
5 -0.00010875 -0.00011876 -0.00001320  0.00016919  0.00031755  0.00042384
6  0.00011525  0.00013653  0.00021071  0.00031353  0.00046288  0.00070651
        X.183       X.184       X.185      X.186       X.187       X.188
1  0.00202090  0.00191550  0.00176170 0.00171820  0.00171780  0.00167000
2  0.00035051  0.00071287  0.00117660 0.00168810  0.00188780  0.00186800
3  0.00100500  0.00096895  0.00088076 0.00077526  0.00064311  0.00054354
4 -0.00040923 -0.00024821 -0.00004350 0.00011087 -0.00001520 -0.00034014
5  0.00048659  0.00041204  0.00032802 0.00037154  0.00047222  0.00057774
6  0.00092371  0.00107880  0.00121730 0.00138630  0.00159570  0.00182210
        X.189      X.190      X.191      X.192      X.193      X.194      X.195
1  0.00153560 0.00133690 0.00109820 0.00095370 0.00087756 0.00088162 0.00094102
2  0.00194670 0.00199470 0.00190560 0.00180720 0.00168720 0.00158890 0.00130030
3  0.00054822 0.00051440 0.00042442 0.00040820 0.00037766 0.00035166 0.00029355
4 -0.00036459 0.00003840 0.00045926 0.00063351 0.00069435 0.00086345 0.00100860
5  0.00061805 0.00054945 0.00043535 0.00031827 0.00024712 0.00025153 0.00027776
6  0.00213090 0.00247160 0.00267160 0.00257720 0.00232340 0.00212180 0.00199730
       X.196      X.197      X.198      X.199      X.200       X.201
1 0.00089650 0.00077962 0.00059356 0.00048477 0.00055533  0.00067731
2 0.00086420 0.00064151 0.00059767 0.00047958 0.00034799  0.00033360
3 0.00022642 0.00030551 0.00034069 0.00028090 0.00031160  0.00036529
4 0.00111210 0.00130750 0.00158760 0.00164930 0.00134660  0.00107980
5 0.00033776 0.00034234 0.00022838 0.00019782 0.00027961  0.00036990
6 0.00178870 0.00142060 0.00108360 0.00070909 0.00020499 -0.00026851
        X.202       X.203       X.204       X.205       X.206       X.207
1  0.00065860  0.00053286  0.00038020  0.00022937  0.00025538  0.00037947
2  0.00030728  0.00027856  0.00027527  0.00039543  0.00054845  0.00061305
3  0.00037891  0.00043169  0.00053185  0.00063206  0.00070519  0.00070914
4  0.00108640  0.00108200  0.00086728  0.00076970  0.00072601  0.00066059
5  0.00046392  0.00050694  0.00053273  0.00053648  0.00046624  0.00049670
6 -0.00046435 -0.00045382 -0.00054964 -0.00081411 -0.00102210 -0.00101230
        X.208       X.209       X.210       X.211       X.212       X.213
1  0.00051631  0.00058924  0.00043369  0.00015178  0.00002610  0.00006300
2  0.00065672  0.00075264  0.00089105  0.00097268  0.00104020  0.00103980
3  0.00071841  0.00077030  0.00081922  0.00091863  0.00097250  0.00087012
4  0.00077754  0.00103160  0.00139600  0.00173640  0.00197240  0.00224510
5  0.00071396  0.00090443  0.00096339  0.00098339  0.00105640  0.00131180
6 -0.00100210 -0.00101770 -0.00088732 -0.00064720 -0.00054445 -0.00052064
        X.214      X.215      X.216       X.217       X.218       X.219
1  0.00015192 0.00023849 0.00013199 -0.00005590 -0.00016490 -0.00021546
2  0.00097021 0.00092785 0.00096781  0.00100250  0.00095066  0.00087244
3  0.00068453 0.00059018 0.00056842  0.00057761  0.00067403  0.00072499
4  0.00263140 0.00291760 0.00315670  0.00334780  0.00319850  0.00292690
5  0.00170590 0.00217040 0.00264990  0.00299600  0.00312210  0.00310570
6 -0.00029516 0.00005650 0.00042308  0.00072351  0.00095641  0.00114890
        X.220      X.221      X.222      X.223      X.224      X.225
1 -0.00011084 0.00010389 0.00027577 0.00032155 0.00021034 0.00007940
2  0.00078322 0.00067563 0.00057836 0.00067998 0.00094320 0.00107460
3  0.00059118 0.00033879 0.00022128 0.00031392 0.00043655 0.00048775
4  0.00267930 0.00233750 0.00187580 0.00131790 0.00071704 0.00011514
5  0.00313480 0.00321890 0.00328330 0.00314300 0.00267800 0.00204510
6  0.00125300 0.00127030 0.00136310 0.00150600 0.00151150 0.00140690
        X.226       X.227       X.228       X.229       X.230       X.231
1  0.00011499  0.00024884  0.00029865  0.00029986  0.00035683  0.00053709
2  0.00105460  0.00100250  0.00093665  0.00090729  0.00091349  0.00085496
3  0.00054345  0.00062204  0.00063347  0.00069718  0.00105030  0.00161450
4 -0.00056569 -0.00114280 -0.00146520 -0.00177510 -0.00212140 -0.00243340
5  0.00135810  0.00071484  0.00026256 -0.00009960 -0.00048161 -0.00087203
6  0.00112570  0.00078069  0.00052737  0.00040977  0.00042598  0.00044980
        X.232       X.233      X.234      X.235       X.236      X.237
1  0.00078584  0.00117660  0.0018746  0.0026744  0.00334550  0.0038824
2  0.00072201  0.00049611  0.0001880 -0.0000322 -0.00011674 -0.0000461
3  0.00209990  0.00248470  0.0029149  0.0033274  0.00361550  0.0037452
4 -0.00255270 -0.00250400 -0.0025211 -0.0024801 -0.00216770 -0.0018301
5 -0.00137450 -0.00183440 -0.0020183 -0.0021135 -0.00219240 -0.0022352
6  0.00036726  0.00014661 -0.0000509 -0.0001474 -0.00008830  0.0000203
        X.238       X.239       X.240       X.241       X.242       X.243
1  0.00449000  0.00515740  0.00558120  0.00566860  0.00555410  0.00522700
2  0.00021453  0.00049898  0.00081963  0.00138970  0.00211240  0.00274490
3  0.00375320  0.00363240  0.00324000  0.00263440  0.00195950  0.00112840
4 -0.00155860 -0.00127850 -0.00100680 -0.00074173 -0.00064987 -0.00052783
5 -0.00235610 -0.00240270 -0.00240070 -0.00243860 -0.00236940 -0.00226750
6  0.00007850  0.00002610 -0.00018796 -0.00033311 -0.00029077 -0.00014526
        X.244       X.245       X.246      X.247       X.248       X.249
1  0.00456320  0.00363480  0.00259570  0.0015747  0.00039361 -0.00120870
2  0.00337570  0.00410690  0.00485350  0.0053736  0.00545260  0.00495470
3  0.00014219 -0.00080501 -0.00165100 -0.0024012 -0.00310290 -0.00402990
4 -0.00021868 -0.00013970 -0.00029588 -0.0004330 -0.00064353 -0.00108890
5 -0.00221950 -0.00207670 -0.00180150 -0.0015700 -0.00150740 -0.00181500
6 -0.00004300  0.00003700  0.00009480  0.0000684 -0.00011814 -0.00068745
       X.250      X.251     X.252     X.253     X.254      X.255      X.256
1 -0.0045342 -0.0097680 -0.019567 -0.026893 -0.021153 -0.0128500 -0.0085485
2  0.0023133 -0.0028443 -0.012881 -0.021074 -0.017285 -0.0110260 -0.0083556
3 -0.0069131 -0.0119860 -0.022057 -0.029054 -0.021412 -0.0113990 -0.0063206
4 -0.0033661 -0.0075792 -0.015849 -0.021758 -0.015676 -0.0075008 -0.0034261
5 -0.0039224 -0.0080162 -0.016630 -0.022622 -0.015850 -0.0071831 -0.0030291
6 -0.0031785 -0.0078859 -0.017374 -0.024228 -0.017807 -0.0092085 -0.0050577
        X.257      X.258       X.259       X.260       X.261      X.262
1 -0.00601030 -0.0049484 -0.00367650 -0.00045113  0.00252150 0.00328820
2 -0.00708020 -0.0069279 -0.00632990 -0.00367000 -0.00041677 0.00096601
3 -0.00339450 -0.0022394 -0.00103000  0.00239220  0.00508590 0.00530020
4 -0.00125960 -0.0005771  0.00013902  0.00285100  0.00492850 0.00492220
5 -0.00080798 -0.0000720  0.00071297  0.00343920  0.00540430 0.00528250
6 -0.00278930 -0.0020427 -0.00112960  0.00189890  0.00438370 0.00464040
        X.263       X.264     X.265      X.266       X.267       X.268
1  0.00012492  0.00008990 -3.46e-05 -1.669e-04 -0.00018922 -0.00018338
2  0.00004220  0.00006510  8.16e-05  6.410e-05  0.00004100  0.00003020
3  0.00014162  0.00012888  3.48e-05 -9.200e-05 -0.00013387 -0.00014118
4 -0.00000926 -0.00001230 -1.58e-05 -9.350e-06  0.00002420  0.00007200
5  0.00000844  0.00003920  7.99e-05  7.780e-05  0.00004520  0.00001440
6  0.00003430  0.00006130  8.62e-05  6.680e-05  0.00002360 -0.00002300
        X.269       X.270       X.271     X.272     X.273     X.274       X.275
1 -1.8872e-04 -0.00018273 -0.00014748 -9.19e-05 -2.59e-05  5.31e-05  1.3113e-04
2  2.4400e-05  0.00000385 -0.00001740 -3.14e-05 -4.68e-05 -4.92e-05 -3.3500e-05
3 -1.2507e-04 -0.00009080 -0.00006890 -4.58e-05 -4.67e-06  2.04e-05  2.4600e-05
4  1.0351e-04  0.00009970  0.00004570 -2.77e-05 -6.81e-05 -4.66e-05  1.5700e-05
5 -4.0300e-07  0.00001170  0.00002720  1.82e-05 -1.71e-05 -3.25e-05  5.9800e-08
6 -4.5300e-05 -0.00002700 -0.00000649  2.77e-07  2.03e-06 -1.25e-05 -3.8000e-05
        X.276      X.277       X.278       X.279       X.280     X.281
1  0.00016373  0.0001382  1.0443e-04  0.00009990  0.00010753  9.72e-05
2 -0.00000476  0.0000149  1.5200e-07 -0.00003470 -0.00005510 -5.65e-05
3  0.00004330  0.0000663  6.2300e-05  0.00003830  0.00003240  6.52e-05
4  0.00003390 -0.0000182 -8.7600e-05 -0.00013535 -0.00012274 -3.63e-05
5  0.00002770  0.0000175  5.5300e-06  0.00001380  0.00001410 -1.08e-05
6 -0.00005440 -0.0000373  2.5500e-05  0.00007560  0.00006690  4.73e-05
        X.282       X.283     X.284     X.285     X.286       X.287       X.288
1  0.00007950  0.00006120  1.67e-05 -3.43e-05 -3.99e-05  0.00000781  0.00007050
2 -0.00004340 -0.00000583  4.16e-05  5.33e-05  7.06e-06 -0.00005650 -0.00007650
3  0.00010153  0.00010105  7.17e-05  1.71e-05 -5.86e-05 -0.00010062 -0.00007700
4  0.00005120  0.00007650  3.62e-05 -2.09e-05 -8.37e-06  0.00006170  0.00011062
5 -0.00003100 -0.00003440 -4.41e-05 -6.03e-05 -5.36e-05 -0.00001270  0.00003520
6  0.00003980  0.00002120  7.68e-06  8.89e-06  2.43e-05  0.00004250  0.00002540
        X.289       X.290       X.291       X.292       X.293       X.294
1  9.2100e-05  0.00005970  0.00002270 -9.0400e-07 -0.00001710 -0.00001480
2 -3.1000e-05  0.00003890  0.00008710  1.0377e-04  0.00008260  0.00004960
3 -5.0500e-05 -0.00008600 -0.00016825 -2.3570e-04 -0.00023312 -0.00016354
4  1.1758e-04  0.00010392  0.00007150  2.5200e-05  0.00000998  0.00003010
5  5.7500e-05  0.00006900  0.00008860  9.0200e-05  0.00007250  0.00005010
6 -4.0100e-07 -0.00001090 -0.00004440 -8.9200e-05 -0.00011047 -0.00010136
      X.295     X.296       X.297       X.298       X.299       X.300
1 -2.28e-05 -7.73e-05 -0.00016346 -0.00023761 -0.00024888 -0.00019523
2  4.19e-05  7.10e-05  0.00012737  0.00016431  0.00014174  0.00007570
3 -6.96e-05  1.84e-05  0.00006200  0.00004430  0.00002240  0.00005000
4  3.43e-05 -7.15e-06 -0.00008360 -0.00014519 -0.00013243 -0.00009970
5  2.35e-05  5.32e-06 -0.00001420 -0.00005490 -0.00009780 -0.00013446
6 -6.44e-05 -4.04e-05 -0.00005530 -0.00007610 -0.00008040 -0.00005460
        X.301       X.302       X.303       X.304       X.305       X.306
1 -0.00014688 -0.00013696 -0.00013702 -0.00012225 -0.00007140  0.00001540
2 -0.00001230 -0.00010360 -0.00016001 -0.00019870 -0.00024232 -0.00025886
3  0.00011532  0.00017516  0.00018219  0.00013242  0.00006820  0.00001690
4 -0.00011634 -0.00012793 -0.00013083 -0.00014182 -0.00010627 -0.00003010
5 -0.00017253 -0.00017895 -0.00014032 -0.00007990 -0.00001670  0.00001710
6  0.00000114  0.00005390  0.00008310  0.00006420  0.00000828 -0.00001740
        X.307       X.308       X.309       X.310       X.311       X.312
1  0.00009750  0.00014440  0.00014988  0.00012263  0.00010514  0.00011525
2 -0.00024647 -0.00023015 -0.00021188 -0.00018312 -0.00012334 -0.00002710
3 -0.00000394  0.00001310  0.00003610  0.00003000 -0.00000625 -0.00004140
4  0.00005680  0.00012485  0.00011562  0.00006900  0.00006450  0.00008100
5  0.00001040 -0.00000363  0.00000534  0.00004930  0.00011893  0.00015856
6  0.00000817  0.00004890  0.00005470  0.00002620  0.00001400  0.00001330
        X.313       X.314       X.315       X.316       X.317       X.318
1  0.00012801  0.00011964  0.00008220  0.00004240  0.00002490  0.00001550
2  0.00006330  0.00013917  0.00020746  0.00022569  0.00019045  0.00014767
3 -0.00004240 -0.00001800  0.00000768  0.00002560  0.00002770  0.00001530
4  0.00010444  0.00013097  0.00009880  0.00000903 -0.00006300 -0.00007190
5  0.00011900  0.00003510 -0.00002900 -0.00004830 -0.00001050  0.00005350
6  0.00000407  0.00001410  0.00003480  0.00003410  0.00002150  0.00001680
        X.319     X.320       X.321       X.322     X.323     X.324     X.325
1  0.00000330  9.50e-07  6.6900e-06  0.00001200  8.75e-06 -7.08e-07 -6.26e-06
2  0.00012091  1.14e-04  1.1627e-04  0.00010511  7.10e-05  1.71e-05 -3.53e-05
3  0.00000248 -2.63e-06 -3.4200e-07  0.00000480  7.96e-06  1.87e-05  3.54e-05
4 -0.00003010  7.74e-06  1.4800e-05  0.00000145 -2.38e-05 -2.66e-05  2.20e-05
5  0.00006270  9.72e-06 -4.2600e-05 -0.00005010  2.72e-06  6.62e-05  8.50e-05
6  0.00004170  6.07e-05  1.5700e-05 -0.00003230 -2.10e-05  1.74e-05  6.19e-05
      X.326       X.327     X.328     X.329       X.330     X.331     X.332
1 -1.74e-05 -0.00001620  1.37e-05  3.99e-05  0.00003600  6.80e-06 -2.12e-05
2 -6.07e-05 -0.00005770 -3.03e-05  1.10e-05  0.00004440  4.25e-05 -4.42e-07
3  3.77e-05  0.00001130 -2.72e-05 -3.53e-05 -0.00001430 -8.67e-07 -8.60e-06
4  8.76e-05  0.00010836  5.62e-05 -3.08e-05 -0.00006200 -1.01e-05  4.63e-05
5  7.58e-05  0.00003460 -2.81e-05 -3.16e-05  0.00002310  5.37e-05  3.44e-05
6  9.11e-05  0.00006200 -1.26e-05 -8.30e-05 -0.00010093 -4.27e-05  2.35e-05
      X.333     X.334       X.335       X.336       X.337       X.338     X.339
1 -1.91e-05  9.68e-06  0.00004520  0.00006770  0.00004630 -0.00000968 -5.55e-05
2 -3.60e-05 -3.27e-05 -0.00001350  0.00001940  0.00006310  0.00008260  6.02e-05
3 -2.76e-05 -4.86e-05 -0.00006460 -0.00006260 -0.00003170  0.00001010  1.03e-05
4  6.92e-05  4.76e-05 -0.00002670 -0.00008620 -0.00011185 -0.00011549 -6.60e-05
5 -1.40e-05 -5.37e-05 -0.00006710 -0.00007240 -0.00005580 -0.00000859  1.46e-05
6  1.65e-05 -4.33e-05 -0.00010606 -0.00012925 -0.00007990  0.00001350  8.29e-05
      X.340     X.341     X.342     X.343     X.344     X.345     X.346
1 -7.16e-05 -5.07e-05 -6.58e-06  1.77e-05 -2.82e-06 -5.11e-05 -8.99e-05
2  5.99e-06 -3.30e-05 -1.81e-05  1.15e-05  2.15e-05  2.58e-05  1.29e-05
3 -2.43e-05 -2.61e-05  5.82e-07  9.31e-06  2.32e-06 -8.02e-06 -1.66e-05
4 -2.19e-05 -4.14e-05 -5.67e-05 -4.93e-05 -4.06e-05 -8.02e-06  2.51e-05
5 -5.05e-06 -1.95e-05 -1.98e-05 -1.35e-05  6.71e-06  2.68e-05  3.99e-05
6  8.35e-05  2.80e-05 -2.59e-05 -2.88e-05  1.70e-05  6.13e-05  5.50e-05
      X.347       X.348       X.349     X.350     X.351     X.352     X.353
1 -9.69e-05 -0.00007570 -0.00003500  1.84e-05  4.49e-05  9.93e-06 -4.40e-05
2 -3.83e-05 -0.00009720 -0.00011244 -8.57e-05 -5.88e-05 -4.73e-05 -4.42e-05
3 -1.59e-05 -0.00000791  0.00002180  5.67e-05  4.54e-05  1.69e-05  1.72e-05
4  6.28e-05  0.00010869  0.00010307  6.11e-05  3.30e-05  2.17e-05  2.56e-05
5  3.64e-05  0.00000981 -0.00000708 -7.17e-06 -1.99e-05 -2.77e-05 -1.55e-05
6  4.64e-06 -0.00005390 -0.00008730 -6.35e-05 -1.12e-06  5.11e-05  6.64e-05
      X.354     X.355     X.356     X.357     X.358     X.359     X.360
1 -5.32e-05 -1.49e-05  3.06e-05  6.30e-05  7.90e-05  6.79e-05  2.42e-05
2 -4.40e-05 -4.31e-05 -4.29e-05 -2.59e-05  1.21e-05  3.13e-05  2.78e-05
3  1.95e-05  1.59e-05  2.84e-05  4.60e-05  3.47e-05 -2.16e-05 -7.35e-05
4  3.28e-05  2.34e-05 -6.55e-06 -3.82e-05 -3.42e-05  7.95e-06  4.38e-05
5 -3.48e-07  1.65e-05  1.63e-05  4.20e-06 -7.42e-07 -1.96e-05 -3.16e-05
6  3.70e-05 -2.40e-06 -1.32e-05  5.32e-07  3.21e-05  6.69e-05  6.40e-05
      X.361     X.362       X.363       X.364     X.365     X.366     X.367
1 -2.02e-05 -2.09e-05  0.00000805  0.00002670  2.55e-05  1.18e-05 -1.12e-05
2  2.24e-05  1.43e-05  0.00002210  0.00004420  4.50e-05  3.15e-05  2.16e-05
3 -7.19e-05 -4.08e-05 -0.00000800  0.00002430  4.11e-05  1.27e-05 -4.56e-05
4  3.42e-05 -2.75e-05 -0.00009790 -0.00012124 -8.15e-05  7.82e-08  5.56e-05
5 -3.70e-06  3.53e-05  0.00005170  0.00003560 -5.01e-06 -3.45e-05 -3.61e-05
6  1.23e-05 -5.73e-05 -0.00010112 -0.00009100 -4.23e-05  1.36e-05  4.46e-05
      X.368     X.369     X.370     X.371     X.372       X.373       X.374
1 -3.50e-05 -3.99e-05 -2.04e-05  8.96e-06  2.64e-05  0.00003100  0.00002540
2  6.69e-06 -5.12e-06  3.55e-08  1.83e-05  2.69e-05  0.00001160 -0.00000994
3 -6.33e-05 -1.71e-05  3.74e-05  5.59e-05  3.81e-05  0.00000265 -0.00002280
4  3.58e-05 -2.67e-05 -7.27e-05 -6.63e-05 -1.72e-05  0.00004540  0.00008990
5 -1.43e-05  3.25e-05  6.48e-05  4.03e-05 -2.36e-05 -0.00008730 -0.00012015
6  2.57e-05 -1.36e-05 -1.27e-05  3.32e-05  8.12e-05  0.00011001  0.00011125
        X.375     X.376     X.377     X.378     X.379     X.380       X.381
1  0.00000440 -1.23e-05 -6.49e-06  1.15e-06 -1.31e-05 -3.65e-05 -0.00004720
2 -0.00001620 -1.09e-05 -9.95e-06 -6.10e-06  4.07e-06  1.16e-06 -0.00001460
3 -0.00003220 -2.25e-05  1.03e-05  2.91e-05  1.46e-05 -1.22e-05 -0.00003230
4  0.00007280  1.79e-05  4.73e-06  3.30e-05  5.00e-05  4.93e-05  0.00005670
5 -0.00010819 -6.14e-05 -2.24e-05 -2.28e-05 -4.46e-05 -5.87e-05 -0.00004710
6  0.00007560  2.48e-05 -6.36e-07  3.12e-06 -1.20e-05 -7.05e-05 -0.00013392
        X.382       X.383       X.384       X.385       X.386       X.387
1 -0.00003920 -0.00002180 -0.00000561  0.00000414  0.00000381  0.00000286
2 -0.00001790 -0.00001170 -0.00001740 -0.00002410 -0.00001730  0.00000304
3 -0.00002390  0.00000592  0.00002840  0.00004420  0.00006160  0.00007250
4  0.00007940  0.00008190  0.00005020  0.00001560 -0.00003260 -0.00010575
5 -0.00000793  0.00004500  0.00009960  0.00013712  0.00013852  0.00012082
6 -0.00015529 -0.00013245 -0.00010818 -0.00010035 -0.00009770 -0.00010003
        X.388       X.389      X.390       X.391       X.392      X.393
1  0.00002380  0.00006910  1.066e-04  0.00011612  1.0193e-04  7.550e-05
2  0.00001250  0.00000386  3.840e-06  0.00000607  1.1700e-07 -9.110e-07
3  0.00007710  0.00008130  8.620e-05  0.00007890  3.4200e-05 -2.940e-05
4 -0.00015452 -0.00013714 -8.250e-05 -0.00006500 -9.4600e-05 -1.298e-04
5  0.00010238  0.00006870  2.370e-05 -0.00000235  1.0500e-06  1.160e-05
6 -0.00008610 -0.00002710  5.020e-05  0.00009920  1.0262e-04  6.680e-05
        X.394       X.395       X.396       X.397       X.398       X.399
1  6.1700e-05  0.00006440  0.00006110  0.00003550 -0.00001620 -0.00008540
2  1.9500e-05  0.00006820  0.00011103  0.00010845  0.00009450  0.00009270
3 -8.4700e-05 -0.00013102 -0.00016544 -0.00018994 -0.00019701 -0.00018564
4 -1.5593e-04 -0.00013438 -0.00004030  0.00006440  0.00012309  0.00012368
5 -1.7500e-08 -0.00002740 -0.00004920 -0.00006810 -0.00007740 -0.00005940
6  4.9400e-05  0.00007900  0.00010571  0.00008820  0.00002570 -0.00003380
        X.400       X.401       X.402       X.403       X.404       X.405
1 -0.00015201 -0.00020230 -0.00023813 -0.00025796 -0.00025902 -0.00023400
2  0.00007160  0.00004340  0.00001880 -0.00001640 -0.00006890 -0.00015722
3 -0.00016833 -0.00012842 -0.00006120 -0.00000981  0.00002430  0.00006820
4  0.00007880  0.00004890  0.00006520  0.00009780  0.00011719  0.00009280
5 -0.00002100  0.00000714  0.00000564 -0.00000728 -0.00001270 -0.00002110
6 -0.00005170 -0.00003400  0.00001420  0.00005840  0.00004070 -0.00002970
        X.406       X.407       X.408       X.409       X.410       X.411
1 -0.00017612 -0.00010094 -0.00003540  0.00001980  0.00007980  0.00013042
2 -0.00023615 -0.00024320 -0.00022829 -0.00023047 -0.00021131 -0.00016042
3  0.00011208  0.00014816  0.00015845  0.00013145  0.00009620  0.00006430
4  0.00004260  0.00001670 -0.00000957 -0.00004850 -0.00005190 -0.00002000
5 -0.00003280 -0.00002560 -0.00000162  0.00001520  0.00001840  0.00002180
6 -0.00007210 -0.00002180  0.00008430  0.00013222  0.00009870  0.00005120
        X.412       X.413       X.414       X.415      X.416       X.417
1  0.00017447  0.00021506  0.00021684  0.00018236 0.00013499  0.00007940
2 -0.00009140 -0.00002340  0.00003050  0.00008840 0.00014154  0.00016564
3  0.00003760  0.00004400  0.00006130  0.00004850 0.00002370 -0.00000948
4  0.00000544  0.00001850  0.00004190  0.00007210 0.00005280 -0.00003120
5  0.00001950 -0.00000741 -0.00002930 -0.00001150 0.00002230  0.00003630
6  0.00000917 -0.00001930 -0.00001170  0.00002180 0.00003800 -0.00000602
        X.418      X.419       X.420       X.421     X.422     X.423     X.424
1  0.00004160  0.0000362  0.00003880  0.00003440  8.55e-06 -3.86e-05 -5.86e-05
2  0.00018014  0.0001935  0.00018755  0.00014913  8.70e-05  4.79e-05  5.44e-05
3 -0.00003610 -0.0000205  0.00000503  0.00001060  5.83e-06 -7.76e-06 -7.71e-06
4 -0.00007100 -0.0000208  0.00003320  0.00003790  4.53e-06 -3.38e-05 -5.96e-05
5  0.00002770  0.0000223  0.00002820  0.00001620 -8.68e-06 -3.34e-06  1.38e-05
6 -0.00007300 -0.0000863 -0.00004150 -0.00000385 -2.23e-05 -6.39e-05 -7.19e-05
      X.425     X.426     X.427     X.428     X.429     X.430     X.431
1 -3.89e-05 -6.38e-06  2.40e-05  2.75e-05 -7.98e-06 -4.87e-05 -4.77e-05
2  6.83e-05  3.98e-05 -3.15e-05 -9.01e-05 -9.83e-05 -6.33e-05 -1.19e-05
3  1.39e-05  2.07e-05  1.90e-05  2.60e-05  2.72e-05  2.35e-05  1.37e-05
4 -6.50e-05 -2.96e-05  3.40e-05  6.73e-05  5.95e-05  3.57e-05 -8.11e-06
5  1.06e-06 -1.92e-05 -1.19e-05  4.52e-06 -1.34e-05 -5.16e-05 -5.41e-05
6 -3.95e-05  4.41e-06  3.00e-05  3.20e-05  1.76e-05 -2.01e-05 -5.25e-05
      X.432     X.433       X.434       X.435     X.436     X.437       X.438
1  1.50e-06  7.14e-05  0.00011698  0.00010716  5.29e-05 -8.44e-06 -0.00003020
2  1.65e-05  5.49e-06 -0.00002020 -0.00003610 -1.87e-05  3.94e-05  0.00010276
3 -1.08e-07 -8.09e-06 -0.00002060 -0.00003800 -3.77e-05 -2.18e-05 -0.00002280
4 -6.10e-05 -8.71e-05 -0.00006840 -0.00004550 -4.20e-05 -1.89e-05  0.00002440
5 -1.20e-05  2.77e-05  0.00003650  0.00003590  2.73e-05 -1.16e-05 -0.00004350
6 -2.47e-05  3.45e-05  0.00006390  0.00005170  1.77e-05  1.80e-06  0.00000200
        X.439     X.440     X.441     X.442     X.443       X.444       X.445
1 -7.4900e-07  3.57e-05  2.80e-05 -1.65e-05 -7.03e-05 -0.00011724 -0.00013224
2  1.2553e-04  8.12e-05  1.59e-05  4.55e-06  2.51e-05  0.00002250  0.00000319
3 -4.1600e-05 -4.90e-05 -3.49e-05 -1.30e-05 -5.88e-06 -0.00001130 -0.00001040
4  3.0100e-05 -2.04e-05 -6.06e-05 -2.20e-05  5.96e-05  0.00009810  0.00008730
5 -1.6400e-05  3.61e-05  5.85e-05  4.16e-05  2.80e-06 -0.00002900 -0.00004600
6 -2.9000e-06  3.69e-06  2.18e-05  3.32e-05  3.88e-05  0.00003070  0.00000452
        X.446     X.447     X.448       X.449       X.450       X.451
1 -0.00010712 -5.05e-05 -7.39e-07  0.00000290 -0.00002310 -0.00004160
2 -0.00000680 -1.21e-05 -5.49e-05 -0.00011562 -0.00011102 -0.00006360
3 -0.00001320 -1.94e-05 -1.45e-05 -0.00000133  0.00001740  0.00002380
4  0.00005410  2.04e-06 -5.82e-05 -0.00008490 -0.00001880  0.00010224
5 -0.00004270 -5.73e-06  3.06e-05  0.00002820 -0.00000150 -0.00003560
6 -0.00001220 -5.21e-06  1.27e-05  0.00002570  0.00002830  0.00001450
        X.452       X.453       X.454       X.455     X.456     X.457     X.458
1 -0.00003610 -5.4500e-06  0.00003340  0.00005120  4.41e-05  1.25e-05 -2.63e-05
2 -0.00005090 -5.3200e-05 -0.00004320 -0.00003910 -4.91e-05 -6.07e-05 -2.42e-05
3  0.00000687  3.0500e-08  0.00000702  0.00000390  4.28e-07  1.99e-06  1.47e-05
4  0.00013899  5.5500e-05 -0.00003530 -0.00004680 -1.60e-05 -2.40e-06  3.57e-06
5 -0.00005050 -3.5200e-05 -0.00000528  0.00002300  3.45e-05  2.45e-05  4.47e-06
6 -0.00003250 -1.0141e-04 -0.00013819 -0.00010715 -4.79e-05 -2.48e-05 -4.51e-05
      X.459     X.460       X.461       X.462     X.463       X.464     X.465
1 -3.53e-05 -9.07e-06  0.00003500  0.00005360  1.68e-05 -0.00003580 -4.80e-05
2  4.65e-05  6.51e-05  0.00003650  0.00002760  3.22e-05  0.00002530  2.46e-05
3  2.43e-05  4.80e-06 -0.00000438  0.00001110  1.34e-05  0.00001020  1.66e-05
4  3.83e-06 -3.66e-05 -0.00010414 -0.00011243 -3.32e-05  0.00003040  1.16e-05
5 -1.72e-05 -1.42e-05  0.00002050  0.00003840  2.44e-05  0.00000210 -1.66e-05
6 -5.89e-05 -4.60e-05 -0.00003500 -0.00001090  5.12e-05  0.00010393  8.35e-05
      X.466     X.467     X.468     X.469     X.470     X.471     X.472
1 -2.00e-05  2.64e-05  6.36e-05  5.25e-05  2.52e-06 -5.38e-05 -8.14e-05
2  3.59e-05  4.07e-05  1.98e-05 -5.35e-06 -4.38e-06  7.56e-06  2.63e-06
3  1.50e-05  7.80e-07 -1.49e-05 -1.91e-05 -5.13e-06  7.66e-06  6.01e-06
4 -1.06e-05  1.66e-05  4.10e-05  6.35e-05  9.56e-05  9.75e-05  6.59e-05
5 -2.10e-05 -1.43e-05  6.58e-06  4.33e-05  5.04e-05  9.96e-06 -1.97e-05
6  1.58e-05 -1.08e-05  2.72e-05  6.27e-05  5.60e-05  4.94e-05  5.54e-05
      X.473     X.474     X.475     X.476     X.477     X.478       X.479
1 -4.07e-05  3.41e-05  6.40e-05  3.72e-05 -1.47e-05 -5.28e-05 -0.00003340
2 -1.60e-05 -2.98e-05 -3.59e-05 -2.55e-05 -2.12e-07  1.08e-05 -0.00000596
3 -8.48e-06 -3.86e-05 -5.74e-05 -3.25e-05  1.46e-05  3.87e-05  0.00003560
4  2.06e-05 -5.34e-06  3.99e-06  2.14e-06 -3.43e-05 -7.05e-05 -0.00011265
5 -4.50e-07  4.98e-05  9.25e-05  9.21e-05  5.05e-05 -1.43e-05 -0.00008140
6  3.48e-05  2.12e-06  1.74e-05  6.08e-05  6.28e-05  2.38e-05 -0.00001980
        X.480       X.481     X.482     X.483     X.484       X.485       X.486
1  0.00001930  0.00005980  7.52e-05  4.67e-05 -1.32e-05 -0.00005840 -0.00005790
2 -0.00002570 -0.00002560 -1.12e-05  1.23e-05  4.78e-05  0.00007510  0.00004720
3  0.00001190 -0.00003270 -5.93e-05 -2.63e-05  4.15e-05  0.00007300  0.00004610
4 -0.00014724 -0.00012414 -8.78e-05 -8.37e-05 -8.52e-05 -0.00007440 -0.00004990
5 -0.00011291 -0.00008820 -4.22e-05 -3.31e-05 -7.72e-05 -0.00014553 -0.00017745
6 -0.00004630 -0.00005470 -5.39e-05 -3.68e-05 -1.38e-05 -0.00002710 -0.00006860
        X.487     X.488     X.489     X.490     X.491       X.492       X.493
1 -0.00001050  3.77e-05  3.66e-05  9.49e-06  1.01e-05  0.00004330  8.1600e-05
2 -0.00002160 -5.71e-05 -4.53e-05 -2.06e-05 -3.37e-06 -0.00000991 -3.6100e-05
3  0.00001000  4.11e-07  6.66e-06  2.84e-05  8.07e-05  0.00012574  1.0207e-04
4 -0.00002090  1.37e-05  6.59e-05  9.22e-05  6.80e-05  0.00005020  6.8600e-05
5 -0.00013786 -5.94e-05  2.02e-05  6.86e-05  5.93e-05  0.00002330  2.9300e-07
6 -0.00009390 -8.56e-05 -3.44e-05  3.30e-05  7.05e-05  0.00006030  1.2300e-05
        X.494       X.495       X.496     X.497     X.498       X.499
1  0.00011101  0.00013892  0.00013815  7.50e-05 -3.90e-06 -0.00003640
2 -0.00005430 -0.00005070 -0.00001490  4.75e-05  9.94e-05  0.00012510
3  0.00003090 -0.00001390 -0.00002750 -5.31e-05 -9.25e-05 -0.00012384
4  0.00009710  0.00009500  0.00007310  8.38e-05  9.42e-05  0.00005550
5  0.00000593  0.00005580  0.00010188  8.90e-05  5.36e-05  0.00002510
6 -0.00003420 -0.00003660  0.00000643  5.31e-05  6.48e-05  0.00003060
        X.500       X.501       X.502       X.503       X.504       X.505
1 -0.00003760 -0.00007590 -0.00015986 -0.00022195 -0.00023876 -0.00024644
2  0.00012344  0.00010340  0.00010428  0.00011720  0.00008840  0.00003780
3 -0.00014332 -0.00016495 -0.00018488 -0.00017359 -0.00014231 -0.00011710
4  0.00001260 -0.00000698 -0.00001960 -0.00003350 -0.00004030 -0.00001930
5  0.00001060  0.00002140  0.00002710  0.00002720  0.00003660  0.00003270
6 -0.00002080 -0.00005260 -0.00003770  0.00002230  0.00006770  0.00005720
       X.506       X.507       X.508       X.509       X.510       X.511
1 -0.0002459 -0.00021358 -0.00017198 -0.00021480 -0.00041551 -0.00083948
2  0.0000146 -0.00001310 -0.00010553 -0.00030741 -0.00062132 -0.00112400
3 -0.0000746 -0.00001270  0.00001690 -0.00005990 -0.00029720 -0.00080448
4 -0.0000250 -0.00008810 -0.00012857 -0.00018401 -0.00036441 -0.00077802
5  0.0000289  0.00003600  0.00000216 -0.00013593 -0.00039147 -0.00084123
6  0.0000161 -0.00002310 -0.00007380 -0.00019651 -0.00044047 -0.00090957
       X.512      X.513       X.514     X.515     X.516     X.517       X.518
1 -0.0012655 -0.0012146 -0.00013329 0.0023651 0.0040071 0.0025108  0.00013798
2 -0.0016468 -0.0016772 -0.00063753 0.0018174 0.0035305 0.0023152  0.00023543
3 -0.0013367 -0.0013002 -0.00007480 0.0026964 0.0044071 0.0025783 -0.00012962
4 -0.0012216 -0.0011717 -0.00013261 0.0021580 0.0035939 0.0021154 -0.00013052
5 -0.0012884 -0.0012428 -0.00016719 0.0022627 0.0037534 0.0021369 -0.00022204
6 -0.0013980 -0.0013715 -0.00024403 0.0023222 0.0039424 0.0023373 -0.00008350
        X.519       X.520       X.521       X.522       X.523       X.524
1 -0.00086052 -0.00079749 -0.00022171  0.00013040 -0.00024791 -0.00059719
2 -0.00061005 -0.00049356  0.00008320  0.00046461  0.00011254 -0.00034552
3 -0.00120070 -0.00107880 -0.00039833  0.00000695 -0.00039930 -0.00071981
4 -0.00102770 -0.00091128 -0.00031741  0.00003880 -0.00030556 -0.00058287
5 -0.00111270 -0.00096383 -0.00035389 -0.00000399 -0.00034960 -0.00060587
6 -0.00102760 -0.00089573 -0.00026626  0.00010009 -0.00028774 -0.00061181
        X.525   X.526   X.527  X.528  X.529  X.530   X.531   X.532   X.533
1 -0.00062659 0.77763 0.82953 2.9079 3.7557 1.3344 0.74247 0.22507 0.56249
2 -0.00048210 0.79771 0.84335 3.0110 3.9877 1.2461 0.74423 0.22567 0.61034
3 -0.00070128 0.79716 0.87413 3.0613 3.9749 1.1560 0.52508 0.19934 0.45707
4 -0.00057092 0.82714 0.85467 3.3337 3.9205 1.3341 0.46024 0.20031 0.45924
5 -0.00057861 0.87298 0.82978 3.5814 3.7667 1.1151 0.44572 0.20538 0.41882
6 -0.00061658 0.81526 0.85925 3.3342 4.1134 1.1881 0.36641 0.19156 0.41202
   X.534   X.535 Label
1 1.5705 0.79906     0
2 1.6645 0.74574     0
3 1.3386 0.74574     0
4 1.7969 0.32451     0
5 1.4422 0.32451     0
6 1.2450 0.32451     0
tail(data)
              X        X.1         X.2        X.3        X.4        X.5
225 -0.00145610 -0.0022260 -0.00308180 -0.0030022 -0.0024684 -0.0021249
226 -0.00097810 -0.0014814 -0.00201120 -0.0019857 -0.0015944 -0.0012174
227 -0.00159900 -0.0010844  0.00046462  0.0020760  0.0028826  0.0036666
228 -0.00051139 -0.0013700 -0.00276860 -0.0035824 -0.0037136 -0.0037210
229 -0.00088029 -0.0017339 -0.00309520 -0.0038909 -0.0040151 -0.0039492
230 -0.00159900 -0.0010844  0.00046462  0.0020760  0.0028826  0.0036666
            X.6         X.7        X.8         X.9        X.10        X.11
225 -0.00203450 -0.00208310 -0.0018906 -0.00095570  0.00032777  0.00104750
226 -0.00099692 -0.00054654  0.0000309  0.00053404  0.00093082  0.00092168
227  0.00445700  0.00522150  0.0058708  0.00625700  0.00634410  0.00637130
228 -0.00362130 -0.00339860 -0.0031061 -0.00262950 -0.00175000 -0.00077249
229 -0.00382700 -0.00383940 -0.0037749 -0.00318220 -0.00214520 -0.00112730
230  0.00445700  0.00522150  0.0058708  0.00625700  0.00634410  0.00637130
           X.12        X.13        X.14        X.15        X.16        X.17
225  0.00107270  0.00054786 -0.00023765 -0.00088459 -0.00123280 -0.00118750
226  0.00060863  0.00026478 -0.00026465 -0.00079788 -0.00108050 -0.00139800
227  0.00652690  0.00665960  0.00655410  0.00609440  0.00529530  0.00430670
228 -0.00029758 -0.00026784 -0.00035662 -0.00036912 -0.00028639 -0.00030750
229 -0.00044266 -0.00014796 -0.00005550  0.00001260 -0.00001380  0.00012028
230  0.00652690  0.00665960  0.00655410  0.00609440  0.00529530  0.00430670
           X.18        X.19        X.20        X.21        X.22        X.23
225 -0.00111450 -0.00129740 -0.00169270 -0.00198370 -0.00190040 -0.00142360
226 -0.00173190 -0.00197100 -0.00199860 -0.00165620 -0.00127540 -0.00113700
227  0.00320980  0.00201560  0.00072809 -0.00051179 -0.00157560 -0.00240920
228 -0.00035027 -0.00024561 -0.00019338 -0.00034283 -0.00044486 -0.00035841
229  0.00040432  0.00037091  0.00007210 -0.00031336 -0.00075238 -0.00096754
230  0.00320980  0.00201560  0.00072809 -0.00051179 -0.00157560 -0.00240920
           X.24        X.25        X.26        X.27        X.28        X.29
225 -0.00074563 -0.00017202  0.00027878  0.00055496  0.00061420  0.00061852
226 -0.00091872 -0.00054513 -0.00036858 -0.00027474  0.00001380  0.00043949
227 -0.00294660 -0.00322170 -0.00324230 -0.00316400 -0.00307140 -0.00286840
228 -0.00019002 -0.00008910 -0.00011213 -0.00012578 -0.00010172 -0.00011659
229 -0.00106030 -0.00127540 -0.00137550 -0.00145810 -0.00171260 -0.00175630
230 -0.00294660 -0.00322170 -0.00324230 -0.00316400 -0.00307140 -0.00286840
           X.30        X.31        X.32        X.33        X.34        X.35
225  0.00091252  0.00119280  0.00111740  0.00086973  0.00059107  0.00043927
226  0.00059595  0.00025135 -0.00009300  0.00012430  0.00055278  0.00061470
227 -0.00257010 -0.00223460 -0.00195120 -0.00182190 -0.00176960 -0.00170870
228 -0.00005610  0.00012858  0.00029228  0.00028860  0.00014923  0.00002320
229 -0.00148440 -0.00102510 -0.00027604  0.00064863  0.00178160  0.00336190
230 -0.00257010 -0.00223460 -0.00195120 -0.00182190 -0.00176960 -0.00170870
           X.36        X.37        X.38        X.39        X.40        X.41
225  0.00023966  0.00004710  0.00017265  0.00046440  0.00060095  0.00076856
226  0.00051281  0.00038917  0.00011205 -0.00017198 -0.00018947  0.00020615
227 -0.00173950 -0.00172180 -0.00165240 -0.00170240 -0.00180000 -0.00195900
228 -0.00002300  0.00005050  0.00015360  0.00017822  0.00007640 -0.00010000
229  0.00504250  0.00650540  0.00799770  0.00943660  0.01052800  0.01113500
230 -0.00173950 -0.00172180 -0.00165240 -0.00170240 -0.00180000 -0.00195900
           X.42        X.43        X.44        X.45        X.46        X.47
225  0.00103820  0.00135570  0.00201730  0.00307350  0.00435960  0.00552160
226  0.00066994  0.00060640  0.00007880 -0.00005790  0.00035399  0.00080178
227 -0.00212660 -0.00221740 -0.00236380 -0.00256260 -0.00265230 -0.00271440
228 -0.00025392 -0.00031967 -0.00030224 -0.00027132 -0.00025747 -0.00030714
229  0.01111700  0.01048300  0.00921870  0.00726700  0.00502640  0.00292340
230 -0.00212660 -0.00221740 -0.00236380 -0.00256260 -0.00265230 -0.00271440
           X.48        X.49        X.50        X.51        X.52        X.53
225  0.00638900  0.00718810  0.00797030  0.00863500  0.00910830  0.00910380
226  0.00129930  0.00206640  0.00306490  0.00409720  0.00510230  0.00627390
227 -0.00271820 -0.00257990 -0.00241830 -0.00216930 -0.00183730 -0.00144020
228 -0.00037792 -0.00040409 -0.00033514 -0.00015144  0.00013468  0.00051957
229  0.00080551 -0.00130720 -0.00308060 -0.00441040 -0.00535340 -0.00599410
230 -0.00271820 -0.00257990 -0.00241830 -0.00216930 -0.00183730 -0.00144020
           X.54        X.55       X.56        X.57        X.58       X.59
225  0.00823880  0.00667380  0.0047953  0.00284180  0.00089575 -0.0012882
226  0.00764410  0.00855720  0.0088554  0.00909130  0.00898640  0.0080175
227 -0.00086715 -0.00022805  0.0002734  0.00063959  0.00090621  0.0010933
228  0.00101880  0.00164800  0.0024116  0.00328300  0.00421720  0.0051390
229 -0.00626830 -0.00603670 -0.0055176 -0.00491570 -0.00423420 -0.0036541
230 -0.00086715 -0.00022805  0.0002734  0.00063959  0.00090621  0.0010933
          X.60       X.61       X.62       X.63        X.64        X.65
225 -0.0035759 -0.0056317 -0.0073344 -0.0085066 -0.00905520 -0.00922280
226  0.0063140  0.0041023  0.0014279 -0.0015473 -0.00424020 -0.00625900
227  0.0012517  0.0012976  0.0012323  0.0010899  0.00078505  0.00039832
228  0.0059486  0.0065817  0.0069775  0.0070959  0.00683710  0.00619750
229 -0.0033023 -0.0030850 -0.0028487 -0.0025183 -0.00215870 -0.00195630
230  0.0012517  0.0012976  0.0012323  0.0010899  0.00078505  0.00039832
           X.66       X.67        X.68        X.69        X.70        X.71
225 -0.00927720 -0.0090275 -0.00839410 -0.00740610 -0.00624640 -0.00517710
226 -0.00793830 -0.0095038 -0.01054100 -0.01083000 -0.01051000 -0.00959890
227  0.00012322 -0.0000266 -0.00012952 -0.00020125 -0.00025081 -0.00027239
228  0.00525710  0.0040860  0.00278150  0.00144600  0.00022213 -0.00084531
229 -0.00193780 -0.0021123 -0.00240600 -0.00256980 -0.00264730 -0.00274380
230  0.00012322 -0.0000266 -0.00012952 -0.00020125 -0.00025081 -0.00027239
           X.72        X.73       X.74       X.75       X.76       X.77
225 -0.00417390 -0.00335340 -0.0026875 -0.0020678 -0.0012993 -0.0005632
226 -0.00815050 -0.00641050 -0.0049845 -0.0040040 -0.0029076 -0.0016713
227 -0.00028279 -0.00031377 -0.0002499 -0.0000883  0.0000165  0.0000611
228 -0.00177320 -0.00247110 -0.0028784 -0.0030290 -0.0029818 -0.0028578
229 -0.00287670 -0.00300520 -0.0031637 -0.0034069 -0.0035602 -0.0033753
230 -0.00028279 -0.00031377 -0.0002499 -0.0000883  0.0000165  0.0000611
           X.78        X.79        X.80        X.81        X.82        X.83
225 -0.00023744 -0.00014127 -0.00000229  0.00014728  0.00016918  0.00038740
226 -0.00078533 -0.00025938  0.00001840  0.00004010 -0.00003980 -0.00016959
227  0.00005770  0.00002440 -0.00000190 -0.00001500  0.00001880  0.00010524
228 -0.00269390 -0.00251110 -0.00239260 -0.00231200 -0.00219410 -0.00209080
229 -0.00289770 -0.00231110 -0.00165730 -0.00096550 -0.00022327  0.00046599
230  0.00005770  0.00002440 -0.00000190 -0.00001500  0.00001880  0.00010524
           X.84        X.85        X.86        X.87        X.88       X.89
225  0.00084210  0.00116710  0.00117610  0.00104680  0.00115080  0.0014099
226 -0.00014769  0.00011743  0.00020855  0.00001550 -0.00006220 -0.0000135
227  0.00015608  0.00015014  0.00015812  0.00019587  0.00027414  0.0003122
228 -0.00202030 -0.00201660 -0.00212130 -0.00217680 -0.00216230 -0.0021047
229  0.00118590  0.00214930  0.00310510  0.00371890  0.00399970  0.0039646
230  0.00015608  0.00015014  0.00015812  0.00019587  0.00027414  0.0003122
           X.90        X.91        X.92       X.93        X.94        X.95
225  0.00160670  0.00173810  0.00178060  0.0015474  0.00096947  0.00057575
226  0.00018855  0.00057322  0.00104980  0.0016810  0.00219260  0.00238270
227  0.00031836  0.00037183  0.00045061  0.0005161  0.00052269  0.00047062
228 -0.00207990 -0.00215550 -0.00230410 -0.0025655 -0.00283310 -0.00295700
229  0.00381380  0.00374010  0.00354780  0.0032360  0.00284720  0.00224390
230  0.00031836  0.00037183  0.00045061  0.0005161  0.00052269  0.00047062
           X.96        X.97        X.98        X.99       X.100       X.101
225  0.00063164  0.00075169  0.00072011  0.00042583 -0.00010400 -0.00051221
226  0.00239250  0.00235270  0.00222180  0.00207840  0.00187400  0.00146980
227  0.00042302  0.00038658  0.00034955  0.00039828  0.00047317  0.00049522
228 -0.00292670 -0.00282190 -0.00266800 -0.00242810 -0.00203740 -0.00151470
229  0.00162780  0.00122480  0.00100100  0.00101700  0.00097644  0.00070411
230  0.00042302  0.00038658  0.00034955  0.00039828  0.00047317  0.00049522
          X.102       X.103       X.104       X.105       X.106       X.107
225 -0.00063118 -0.00066753 -0.00052962 -0.00033636 -0.00043485 -0.00070757
226  0.00087502 -0.00003550 -0.00099053 -0.00159420 -0.00172880 -0.00156810
227  0.00045524  0.00041052  0.00043269  0.00046818  0.00045996  0.00038873
228 -0.00088694 -0.00015331  0.00056260  0.00116080  0.00161170  0.00190810
229  0.00056849  0.00053962  0.00043392  0.00043654  0.00053458  0.00054861
230  0.00045524  0.00041052  0.00043269  0.00046818  0.00045996  0.00038873
          X.108       X.109       X.110       X.111       X.112       X.113
225 -0.00089106 -0.00069129 -0.00025798  0.00003220  0.00018877  0.00038341
226 -0.00125330 -0.00086630 -0.00069484 -0.00070787 -0.00066655 -0.00022592
227  0.00029390  0.00014009 -0.00006880 -0.00026160 -0.00039437 -0.00050068
228  0.00203790  0.00199990  0.00188330  0.00169550  0.00137400  0.00105020
229  0.00049418  0.00030733  0.00020168  0.00035606  0.00041186  0.00042440
230  0.00029390  0.00014009 -0.00006880 -0.00026160 -0.00039437 -0.00050068
          X.114       X.115       X.116       X.117       X.118       X.119
225  0.00043029  0.00019812  0.00014205  0.00036781  0.00044681  0.00022426
226  0.00049261  0.00087371  0.00070425  0.00037829  0.00020302  0.00013473
227 -0.00060727 -0.00062822 -0.00059458 -0.00055272 -0.00047503 -0.00029190
228  0.00075379  0.00044110  0.00022679  0.00009930  0.00006010  0.00008550
229  0.00065751  0.00083398  0.00078443  0.00069762  0.00064470  0.00070207
230 -0.00060727 -0.00062822 -0.00059458 -0.00055272 -0.00047503 -0.00029190
         X.120      X.121      X.122      X.123      X.124       X.125
225 0.00007140 0.00006780 0.00003780 0.00009160 0.00037447  0.00092672
226 0.00026549 0.00061556 0.00087770 0.00075532 0.00041670  0.00018635
227 0.00007110 0.00053887 0.00104840 0.00164800 0.00234220  0.00300250
228 0.00005500 0.00006300 0.00017053 0.00022474 0.00020782  0.00017650
229 0.00074974 0.00054264 0.00033574 0.00023277 0.00003990 -0.00021001
230 0.00007110 0.00053887 0.00104840 0.00164800 0.00234220  0.00300250
          X.126       X.127       X.128       X.129      X.130       X.131
225  0.00138650  0.00174920  0.00244780  0.00348630  0.0045849  0.00559980
226  0.00035474  0.00067218  0.00054000  0.00016669 -0.0000803 -0.00027885
227  0.00362630  0.00432500  0.00502870  0.00556410  0.0057762  0.00572270
228  0.00009080  0.00002870  0.00000102 -0.00003240 -0.0000349 -0.00006650
229 -0.00042268 -0.00059052 -0.00075387 -0.00100750 -0.0012451 -0.00128760
230  0.00362630  0.00432500  0.00502870  0.00556410  0.0057762  0.00572270
          X.132       X.133       X.134       X.135      X.136      X.137
225  0.00655970  0.00742540  0.00813570  0.00844370  0.0083146  0.0079427
226 -0.00028280 -0.00002040  0.00037175  0.00100610  0.0015279  0.0018927
227  0.00545860  0.00487840  0.00402430  0.00310830  0.0022004  0.0012540
228 -0.00017387 -0.00034917 -0.00047863 -0.00043366 -0.0002709 -0.0001621
229 -0.00131800 -0.00144110 -0.00161050 -0.00168080 -0.0016884 -0.0018042
230  0.00545860  0.00487840  0.00402430  0.00310830  0.0022004  0.0012540
          X.138       X.139       X.140       X.141       X.142       X.143
225  0.00719440  0.00585360  0.00386940  0.00166120 -0.00037621 -0.00242600
226  0.00274620  0.00390550  0.00505990  0.00624460  0.00726040  0.00802850
227  0.00025779 -0.00070990 -0.00146080 -0.00200190 -0.00239070 -0.00255660
228 -0.00018730 -0.00026447 -0.00032488 -0.00037483 -0.00037136 -0.00024322
229 -0.00190310 -0.00183710 -0.00164190 -0.00152020 -0.00144400 -0.00137030
230  0.00025779 -0.00070990 -0.00146080 -0.00200190 -0.00239070 -0.00255660
          X.144       X.145       X.146       X.147       X.148       X.149
225 -0.00459710 -0.00645710 -0.00766130 -0.00848340 -0.00919580 -0.00948000
226  0.00841120  0.00826120  0.00791010  0.00738460  0.00629770  0.00462990
227 -0.00254600 -0.00248810 -0.00242210 -0.00237610 -0.00232360 -0.00219770
228 -0.00011158 -0.00015427 -0.00037065 -0.00058153 -0.00062075 -0.00058744
229 -0.00137010 -0.00147930 -0.00147350 -0.00121400 -0.00099653 -0.00099128
230 -0.00254600 -0.00248810 -0.00242210 -0.00237610 -0.00232360 -0.00219770
          X.150       X.151       X.152      X.153       X.154       X.155
225 -0.00899650 -0.00813470 -0.00728840 -0.0063217 -0.00520370 -0.00415160
226  0.00259440  0.00037429 -0.00202810 -0.0044014 -0.00637040 -0.00779650
227 -0.00205900 -0.00197550 -0.00192320 -0.0019118 -0.00194390 -0.00199110
228 -0.00060047 -0.00060690 -0.00060545 -0.0006042 -0.00057603 -0.00052739
229 -0.00122030 -0.00146590 -0.00162500 -0.0017402 -0.00168470 -0.00150860
230 -0.00205900 -0.00197550 -0.00192320 -0.0019118 -0.00194390 -0.00199110
          X.156       X.157       X.158      X.159       X.160       X.161
225 -0.00340830 -0.00280750 -0.00202540 -0.0012571 -0.00069529 -0.00020323
226 -0.00870890 -0.00919390 -0.00937150 -0.0092313 -0.00875320 -0.00804200
227 -0.00204870 -0.00212850 -0.00220070 -0.0022776 -0.00244470 -0.00262450
228 -0.00041845 -0.00032585 -0.00034322 -0.0003404 -0.00024563 -0.00015206
229 -0.00142340 -0.00154390 -0.00174290 -0.0017989 -0.00160430 -0.00137420
230 -0.00204870 -0.00212850 -0.00220070 -0.0022776 -0.00244470 -0.00262450
         X.162       X.163      X.164       X.165       X.166       X.167
225  0.0000584  0.00001900  0.0000296  0.00024634  0.00065214  0.00098518
226 -0.0069601 -0.00557010 -0.0040344 -0.00261760 -0.00184230 -0.00156340
227 -0.0027822 -0.00289850 -0.0029574 -0.00295760 -0.00285050 -0.00264540
228 -0.0000660  0.00000821  0.0000471  0.00005150  0.00004500  0.00008660
229 -0.0011801 -0.00075287 -0.0001025  0.00075113  0.00180690  0.00310590
230 -0.0027822 -0.00289850 -0.0029574 -0.00295760 -0.00285050 -0.00264540
         X.168       X.169      X.170       X.171       X.172       X.173
225  0.0012182  0.00147310  0.0016858  0.00172860  0.00167360  0.00175500
226 -0.0012549 -0.00083393 -0.0004197 -0.00005510  0.00024255  0.00037824
227 -0.0023698 -0.00204370 -0.0016205 -0.00113140 -0.00061090 -0.00009840
228  0.0000959  0.00001900 -0.0000552 -0.00010384 -0.00022197 -0.00045754
229  0.0046816  0.00623340  0.0075398  0.00876370  0.00987270  0.01041100
230 -0.0023698 -0.00204370 -0.0016205 -0.00113140 -0.00061090 -0.00009840
          X.174       X.175       X.176       X.177       X.178       X.179
225  0.00182850  0.00181370  0.00169270  0.00156770  0.00117320  0.00042875
226  0.00011435 -0.00041258 -0.00042951  0.00004080  0.00036150  0.00067319
227  0.00038057  0.00078581  0.00104890  0.00124890  0.00139290  0.00144110
228 -0.00070235 -0.00080496 -0.00080044 -0.00076094 -0.00057096 -0.00019544
229  0.01030800  0.00970680  0.00866240  0.00716900  0.00527690  0.00324290
230  0.00038057  0.00078581  0.00104890  0.00124890  0.00139290  0.00144110
          X.180       X.181      X.182       X.183       X.184       X.185
225 -0.00038786 -0.00097098 -0.0010103 -0.00088121 -0.00078130 -0.00086893
226  0.00100770  0.00119740  0.0012969  0.00131310  0.00151920  0.00200180
227  0.00141540  0.00128180  0.0010485  0.00078828  0.00057227  0.00043480
228  0.00024676  0.00082243  0.0016310  0.00266630  0.00383080  0.00492020
229  0.00129790 -0.00052678 -0.0021549 -0.00336390 -0.00423540 -0.00489540
230  0.00141540  0.00128180  0.0010485  0.00078828  0.00057227  0.00043480
          X.186       X.187       X.188       X.189       X.190       X.191
225 -0.00116950 -0.00146320 -0.00140920 -0.00091234 -0.00027234  0.00016835
226  0.00204420  0.00167740  0.00151980  0.00117340  0.00062464  0.00023043
227  0.00035397  0.00027887  0.00018147  0.00008950  0.00004630  0.00012559
228  0.00584380  0.00659930  0.00716270  0.00745140  0.00742280  0.00695480
229 -0.00531750 -0.00543670 -0.00526150 -0.00493320 -0.00455870 -0.00416130
230  0.00035397  0.00027887  0.00018147  0.00008950  0.00004630  0.00012559
          X.192       X.193       X.194       X.195       X.196       X.197
225  0.00021213  0.00016441  0.00000869 -0.00009780  0.00012974  0.00043212
226 -0.00024979 -0.00086153 -0.00152960 -0.00215180 -0.00224770 -0.00201860
227  0.00028183  0.00044650  0.00054701  0.00055399  0.00055864  0.00054676
228  0.00608260  0.00496560  0.00365450  0.00230640  0.00101190 -0.00018950
229 -0.00381110 -0.00354510 -0.00326480 -0.00295790 -0.00260760 -0.00231160
230  0.00028183  0.00044650  0.00054701  0.00055399  0.00055864  0.00054676
          X.198       X.199       X.200       X.201       X.202       X.203
225  0.00060625  0.00060650  0.00041357  0.00019337  0.00009150  0.00014204
226 -0.00184910 -0.00134320 -0.00083057 -0.00065474 -0.00031301  0.00029963
227  0.00054324  0.00058314  0.00057344  0.00044234  0.00029856  0.00021147
228 -0.00124200 -0.00216110 -0.00290400 -0.00330650 -0.00345710 -0.00352630
229 -0.00219550 -0.00217000 -0.00219460 -0.00227380 -0.00243500 -0.00268190
230  0.00054324  0.00058314  0.00057344  0.00044234  0.00029856  0.00021147
          X.204       X.205       X.206       X.207       X.208       X.209
225  0.00045463  0.00075983  0.00072654  0.00062141  0.00069699  0.00096229
226  0.00092294  0.00139650  0.00159010  0.00162900  0.00153920  0.00102030
227  0.00016927  0.00016381  0.00009980 -0.00000280 -0.00008640 -0.00017711
228 -0.00352790 -0.00345890 -0.00325430 -0.00299750 -0.00285440 -0.00271750
229 -0.00285690 -0.00287930 -0.00292090 -0.00298450 -0.00295320 -0.00284680
230  0.00016927  0.00016381  0.00009980 -0.00000280 -0.00008640 -0.00017711
          X.210       X.211       X.212       X.213       X.214       X.215
225  0.00149780  0.00227270  0.00312280  0.00396800  0.00470430  0.00554630
226  0.00052628  0.00040669  0.00031486  0.00022339  0.00010297 -0.00016513
227 -0.00022462 -0.00015589 -0.00010925 -0.00019799 -0.00032077 -0.00038514
228 -0.00247390 -0.00226350 -0.00209040 -0.00188730 -0.00168000 -0.00159640
229 -0.00263390 -0.00229870 -0.00173190 -0.00089144 -0.00004220  0.00064517
230 -0.00022462 -0.00015589 -0.00010925 -0.00019799 -0.00032077 -0.00038514
          X.216       X.217       X.218      X.219       X.220       X.221
225  0.00672310  0.00777820  0.00839650  0.0085124  0.00807050  0.00718330
226 -0.00051411 -0.00074350 -0.00077238 -0.0005931 -0.00038362 -0.00024045
227 -0.00033814 -0.00018956 -0.00004810  0.0000740  0.00019822  0.00018552
228 -0.00174120 -0.00193810 -0.00202640 -0.0021269 -0.00238660 -0.00266840
229  0.00129610  0.00201520  0.00277970  0.0034562  0.00391550  0.00415410
230 -0.00033814 -0.00018956 -0.00004810  0.0000740  0.00019822  0.00018552
          X.222       X.223       X.224       X.225       X.226       X.227
225  0.00582810  0.00391700  0.00183750 -0.00039344 -0.00292940 -0.00514120
226 -0.00001850  0.00018142  0.00048413  0.00107270  0.00183090  0.00258780
227  0.00011588  0.00017766  0.00032822  0.00042681  0.00042058  0.00034881
228 -0.00285400 -0.00301510 -0.00316360 -0.00312880 -0.00282410 -0.00244510
229  0.00411070  0.00381620  0.00339910  0.00294060  0.00247640  0.00197590
230  0.00011588  0.00017766  0.00032822  0.00042681  0.00042058  0.00034881
          X.228       X.229       X.230       X.231       X.232       X.233
225 -0.00683980 -0.00810730 -0.00885720 -0.00921300 -0.00903200 -0.00834050
226  0.00349460  0.00470340  0.00597170  0.00712260  0.00790420  0.00833890
227  0.00025264  0.00015052 -0.00001240 -0.00008540  0.00002250  0.00008850
228 -0.00205320 -0.00150890 -0.00080162 -0.00011129  0.00045158  0.00096216
229  0.00143630  0.00102010  0.00071552  0.00038970  0.00022747  0.00020618
230  0.00025264  0.00015052 -0.00001240 -0.00008540  0.00002250  0.00008850
          X.234       X.235       X.236       X.237       X.238       X.239
225 -0.00753750 -0.00655660 -0.00526440 -0.00409030 -0.00331110 -0.00274400
226  0.00849650  0.00824290  0.00758060  0.00646790  0.00470800  0.00224440
227 -0.00001770 -0.00016469 -0.00028197 -0.00040231 -0.00045235 -0.00044171
228  0.00143210  0.00171890  0.00179150  0.00182990  0.00183180  0.00166810
229  0.00021991  0.00034230  0.00051919  0.00063196  0.00060552  0.00054094
230 -0.00001770 -0.00016469 -0.00028197 -0.00040231 -0.00045235 -0.00044171
          X.240       X.241       X.242       X.243       X.244       X.245
225 -0.00230110 -0.00195260 -0.00174180 -0.00157810 -0.00135280 -0.00121300
226 -0.00041620 -0.00292140 -0.00506330 -0.00670140 -0.00795110 -0.00884120
227 -0.00033116 -0.00012969  0.00004840  0.00034446  0.00091783  0.00168000
228  0.00140000  0.00111980  0.00086285  0.00061416  0.00042342  0.00035526
229  0.00067418  0.00099738  0.00116770  0.00106740  0.00089616  0.00069835
230 -0.00033116 -0.00012969  0.00004840  0.00034446  0.00091783  0.00168000
          X.246       X.247       X.248       X.249       X.250       X.251
225 -0.00123960 -0.00122540 -0.00091404 -0.00034606  0.00044519  0.00152770
226 -0.00928270 -0.00929950 -0.00900190 -0.00823750 -0.00756490 -0.00729620
227  0.00257690  0.00353670  0.00438910  0.00506530  0.00545330  0.00534680
228  0.00036831  0.00036078  0.00033694  0.00035747  0.00073981  0.00156590
229  0.00043070  0.00027564  0.00039103  0.00049743  0.00043398  0.00032014
230  0.00257690  0.00353670  0.00438910  0.00506530  0.00545330  0.00534680
          X.252       X.253       X.254       X.255       X.256       X.257
225  0.00321010  0.00453820  0.00439760  0.00387840  0.00364000  0.00343380
226 -0.00822950 -0.00848660 -0.00514070 -0.00151580  0.00041829  0.00159080
227  0.00446450  0.00276820  0.00088013 -0.00060884 -0.00175510 -0.00270730
228  0.00330910  0.00472410  0.00372560  0.00220060  0.00142170  0.00096011
229  0.00043954  0.00052944 -0.00004720 -0.00066367 -0.00087647 -0.00097964
230  0.00446450  0.00276820  0.00088013 -0.00060884 -0.00175510 -0.00270730
          X.258       X.259       X.260       X.261       X.262       X.263
225  0.00322000  0.00284260  0.00226450  0.00145110  0.00090187  0.00004130
226  0.00229930  0.00283230  0.00372750  0.00382300  0.00322140  0.00003410
227 -0.00351550 -0.00406430 -0.00449370 -0.00387740 -0.00296180  0.00031206
228  0.00079494  0.00063861  0.00012245 -0.00041912 -0.00057872 -0.00012426
229 -0.00110730 -0.00121840 -0.00137630 -0.00127970 -0.00103920 -0.00011644
230 -0.00351550 -0.00406430 -0.00449370 -0.00387740 -0.00296180  0.00031206
          X.264      X.265       X.266       X.267       X.268       X.269
225  0.00015374 0.00029921  0.00025098  0.00006920 -0.00001670  0.00003880
226  0.00010896 0.00021275  0.00021049  0.00011499  0.00006130  0.00006430
227  0.00028788 0.00009700 -0.00013139 -0.00013834 -0.00009720 -0.00009670
228 -0.00002950 0.00018191  0.00030950  0.00025177  0.00018251  0.00014637
229 -0.00002260 0.00018377  0.00030546  0.00023646  0.00013896  0.00009910
230  0.00028788 0.00009700 -0.00013139 -0.00013834 -0.00009720 -0.00009670
          X.270       X.271       X.272       X.273       X.274       X.275
225  0.00017935  0.00024055  0.00007020 -0.00022419 -0.00039769 -0.00037374
226  0.00003180 -0.00005150 -0.00014473 -0.00021831 -0.00021046 -0.00014618
227 -0.00013051 -0.00017114 -0.00016037 -0.00009700 -0.00005590 -0.00009610
228  0.00014324  0.00015957  0.00012767 -0.00001640 -0.00018603 -0.00022872
229  0.00016199  0.00024261  0.00019602  0.00002490 -0.00014461 -0.00021565
230 -0.00013051 -0.00017114 -0.00016037 -0.00009700 -0.00005590 -0.00009610
          X.276       X.277       X.278      X.279     X.280       X.281
225 -0.00020491  0.00000460  0.00014290  1.544e-04  5.50e-05 -0.00004020
226 -0.00008500 -0.00000743  0.00004950  5.040e-05  6.33e-05  0.00010987
227 -0.00018323 -0.00024870 -0.00025301 -2.052e-04 -1.45e-04 -0.00009180
228 -0.00014861 -0.00005090 -0.00000552 -6.020e-06  1.18e-06  0.00000683
229 -0.00017840 -0.00010028 -0.00003500  6.370e-06 -2.82e-05 -0.00011663
230 -0.00018323 -0.00024870 -0.00025301 -2.052e-04 -1.45e-04 -0.00009180
          X.282       X.283       X.284      X.285      X.286       X.287
225 -0.00002510  0.00008900  0.00020224 0.00022344 0.00013873  0.00001220
226  0.00015561  0.00015279  0.00007340 0.00000269 0.00000444  0.00000323
227 -0.00003100  0.00005150  0.00013731 0.00020347 0.00023785  0.00023371
228 -0.00002030 -0.00002880  0.00001600 0.00005290 0.00003580 -0.00000892
229 -0.00014137 -0.00009160 -0.00001470 0.00005420 0.00005810  0.00002870
230 -0.00003100  0.00005150  0.00013731 0.00020347 0.00023785  0.00023371
          X.288       X.289       X.290       X.291       X.292       X.293
225 -0.00007980 -0.00011799 -0.00010276 -0.00003810  0.00000449 -0.00004920
226 -0.00002350 -0.00000984  0.00001420 -0.00003150 -0.00012146 -0.00012958
227  0.00019612  0.00013786  0.00009420  0.00007750  0.00005570  0.00001480
228 -0.00003180 -0.00001740  0.00000303  0.00001770  0.00003440  0.00002570
229  0.00002570  0.00002100  0.00004310  0.00012852  0.00019937  0.00022494
230  0.00019612  0.00013786  0.00009420  0.00007750  0.00005570  0.00001480
          X.294       X.295       X.296       X.297       X.298     X.299
225 -0.00012073 -0.00011370 -0.00005260  0.00000564  0.00003720  7.84e-05
226 -0.00000107  0.00011591  0.00006690 -0.00005810 -0.00010323 -8.40e-05
227 -0.00003440 -0.00006770 -0.00006310 -0.00004340 -0.00002860 -1.05e-05
228 -0.00002100 -0.00006380 -0.00005800 -0.00001170  0.00003190  4.14e-05
229  0.00023608  0.00023238  0.00023185  0.00020766  0.00010445 -8.55e-06
230 -0.00003440 -0.00006770 -0.00006310 -0.00004340 -0.00002860 -1.05e-05
          X.300      X.301       X.302       X.303       X.304       X.305
225  0.00011879  0.0000914  0.00003960  0.00004580  0.00008930  1.5153e-04
226 -0.00003860  0.0000485  0.00013278  0.00012421 -0.00000526 -1.3547e-04
227 -0.00001530 -0.0000394 -0.00004480 -0.00003430 -0.00001420  5.6400e-07
228  0.00001000 -0.0000353 -0.00005630 -0.00003810  0.00000328  3.6600e-05
229 -0.00007660 -0.0001703 -0.00030832 -0.00044178 -0.00054032 -5.8218e-04
230 -0.00001530 -0.0000394 -0.00004480 -0.00003430 -0.00001420  5.6400e-07
          X.306       X.307       X.308       X.309       X.310       X.311
225  0.00022104  0.00022432  0.00013016 -0.00000861 -0.00009810 -0.00010881
226 -0.00009040  0.00009850  0.00020842  0.00018705  0.00016439  0.00016925
227 -0.00000320  0.00000779  0.00003590  0.00005200  0.00006740  0.00007790
228  0.00004060  0.00002010 -0.00000404 -0.00001340  0.00000335  0.00003800
229 -0.00056477 -0.00047149 -0.00028768 -0.00009940  0.00001920  0.00012515
230 -0.00000320  0.00000779  0.00003590  0.00005200  0.00006740  0.00007790
          X.312       X.313       X.314       X.315       X.316       X.317
225 -0.00011704 -0.00017904 -0.00029823 -0.00045533 -0.00056099 -0.00051843
226  0.00014785  0.00010039  0.00006360  0.00003290 -0.00006490 -0.00023491
227  0.00007410  0.00007730  0.00008270  0.00008420  0.00007300  0.00002070
228  0.00007190  0.00009360  0.00010268  0.00010789  0.00011410  0.00011757
229  0.00024766  0.00033222  0.00036054  0.00036249  0.00036570  0.00034526
230  0.00007410  0.00007730  0.00008270  0.00008420  0.00007300  0.00002070
          X.318       X.319       X.320       X.321      X.322       X.323
225 -0.00036579 -0.00021228 -0.00012377 -0.00007680  0.0000201  0.00017466
226 -0.00033872 -0.00036736 -0.00046194 -0.00058333 -0.0006001 -0.00051240
227 -0.00004880 -0.00008670 -0.00009200 -0.00008340 -0.0000789 -0.00008910
228  0.00011004  0.00008420  0.00003810 -0.00002580 -0.0000981 -0.00016754
229  0.00026110  0.00014712  0.00004250 -0.00005040 -0.0000995 -0.00008140
230 -0.00004880 -0.00008670 -0.00009200 -0.00008340 -0.0000789 -0.00008910
          X.324       X.325       X.326       X.327       X.328       X.329
225  0.00032179  0.00042371  0.00044463  0.00037923  0.00030969  0.00029786
226 -0.00035854 -0.00013196  0.00013539  0.00031913  0.00036163  0.00038587
227 -0.00009710 -0.00009570 -0.00008160 -0.00003370  0.00002920  0.00006050
228 -0.00022911 -0.00028208 -0.00031908 -0.00031984 -0.00027929 -0.00021013
229 -0.00003200 -0.00000645 -0.00003460 -0.00009290 -0.00012855 -0.00011948
230 -0.00009710 -0.00009570 -0.00008160 -0.00003370  0.00002920  0.00006050
          X.330       X.331      X.332      X.333       X.334       X.335
225  0.00029567  0.00024716 0.00014166 0.00002210 -0.00006030 -0.00009990
226  0.00048152  0.00056907 0.00058041 0.00052271  0.00039072  0.00018125
227  0.00005640  0.00004200 0.00002990 0.00002330  0.00002070  0.00002650
228 -0.00012291 -0.00002800 0.00006010 0.00012432  0.00016962  0.00020998
229 -0.00006460  0.00000277 0.00002580 0.00000986 -0.00000697 -0.00001240
230  0.00005640  0.00004200 0.00002990 0.00002330  0.00002070  0.00002650
          X.336       X.337       X.338       X.339       X.340       X.341
225 -0.00009280 -0.00005480 -0.00004070 -0.00009640 -0.00016324 -0.00014635
226 -0.00003550 -0.00012544 -0.00009220 -0.00010319 -0.00019215 -0.00024799
227  0.00003900  0.00002830 -0.00000635 -0.00002990 -0.00003290 -0.00002120
228  0.00023094  0.00021658  0.00017051  0.00010901  0.00005540  0.00001500
229 -0.00000607  0.00002990  0.00010950  0.00018587  0.00019498  0.00014813
230  0.00003900  0.00002830 -0.00000635 -0.00002990 -0.00003290 -0.00002120
          X.342       X.343       X.344     X.345     X.346     X.347     X.348
225 -0.00007550 -0.00002570  0.00001310  5.75e-05  4.02e-05 -4.51e-05 -9.53e-05
226 -0.00024181 -0.00019372 -0.00011217 -2.60e-05  3.89e-05  3.61e-05 -3.25e-05
227 -0.00000239  0.00001350  0.00002170  1.48e-05 -4.00e-06 -1.08e-05 -4.20e-07
228 -0.00001230 -0.00001620 -0.00001110 -1.90e-05 -3.31e-05 -4.27e-05 -3.18e-05
229  0.00009500  0.00005760  0.00003610  2.83e-05  4.00e-05  2.81e-05 -6.54e-05
230 -0.00000239  0.00001350  0.00002170  1.48e-05 -4.00e-06 -1.08e-05 -4.20e-07
          X.349       X.350       X.351       X.352       X.353      X.354
225 -0.00004940  0.00003140  0.00004540 -0.00000597 -0.00006640 -1.196e-04
226 -0.00005040  0.00001690  0.00008470  0.00012358  0.00012789  9.360e-05
227  0.00000958  0.00000786 -0.00000214 -0.00000174  0.00000688  2.930e-06
228  0.00000110  0.00002000  0.00000789 -0.00002520 -0.00005510 -6.180e-05
229 -0.00018406 -0.00023897 -0.00021794 -0.00014506 -0.00008630 -8.480e-05
230  0.00000958  0.00000786 -0.00000214 -0.00000174  0.00000688  2.930e-06
         X.355     X.356       X.357       X.358       X.359       X.360
225 -0.0001468 -9.02e-05  0.00004570  0.00011814  0.00005240 -0.00005650
226  0.0000269 -7.37e-05 -0.00014824 -0.00014653 -0.00011064 -0.00008470
227 -0.0000133 -2.80e-05 -0.00002740 -0.00001120  0.00000497  0.00001820
228 -0.0000409  1.16e-05  0.00006980  0.00009580  0.00009230  0.00008810
229 -0.0000956 -9.47e-05 -0.00007020  0.00000850  0.00009390  0.00012648
230 -0.0000133 -2.80e-05 -0.00002740 -0.00001120  0.00000497  0.00001820
          X.361       X.362       X.363       X.364       X.365     X.366
225 -0.00011382 -0.00007720  0.00003270  0.00011293  0.00011647  7.82e-05
226 -0.00007760 -0.00010455 -0.00014615 -0.00016015 -0.00011260  2.46e-05
227  0.00002460  0.00000955 -0.00001320 -0.00001870 -0.00000463  7.64e-06
228  0.00009860  0.00011323  0.00011235  0.00009210  0.00005090 -1.28e-05
229  0.00009950  0.00002550 -0.00001370  0.00001700  0.00003570  3.18e-05
230  0.00002460  0.00000955 -0.00001320 -0.00001870 -0.00000463  7.64e-06
         X.367       X.368       X.369       X.370       X.371       X.372
225  6.640e-07 -0.00006670 -0.00003870  0.00006260  0.00013781  0.00010794
226  1.901e-04  0.00027460  0.00024627  0.00015385  0.00004400 -0.00003760
227 -1.470e-06 -0.00002270 -0.00003680 -0.00004010 -0.00003770 -0.00002360
228 -7.700e-05 -0.00012082 -0.00014263 -0.00014693 -0.00013436 -0.00010899
229  3.850e-05  0.00002060 -0.00001900 -0.00003700 -0.00001980  0.00003310
230 -1.470e-06 -0.00002270 -0.00003680 -0.00004010 -0.00003770 -0.00002360
        X.373     X.374       X.375     X.376       X.377       X.378
225  1.24e-05 -4.82e-05 -0.00006790 -8.52e-05 -0.00006040  0.00001540
226 -2.93e-05  5.51e-05  0.00011198  3.68e-05 -0.00012859 -0.00020806
227  2.08e-06  2.29e-05  0.00002970  3.52e-05  0.00004490  0.00004620
228 -8.85e-05 -6.77e-05 -0.00003130  1.43e-06  0.00002770  0.00005610
229  6.21e-05  3.54e-05  0.00002530  2.34e-05 -0.00002540 -0.00006180
230  2.08e-06  2.29e-05  0.00002970  3.52e-05  0.00004490  0.00004620
          X.379     X.380     X.381       X.382       X.383     X.384
225  0.00003410 -3.08e-05 -6.16e-05 -0.00001120  0.00004030  6.68e-05
226 -0.00013092 -1.45e-06  8.31e-05  0.00010856  0.00006000 -5.10e-05
227  0.00004720  6.42e-05  9.26e-05  0.00011019  0.00010116  8.22e-05
228  0.00006900  6.40e-05  4.47e-05  0.00002410  0.00002300  1.70e-05
229 -0.00004100 -6.54e-06  2.82e-06 -0.00003010 -0.00006110 -3.87e-05
230  0.00004720  6.42e-05  9.26e-05  0.00011019  0.00010116  8.22e-05
          X.385       X.386       X.387     X.388     X.389       X.390
225  0.00010385  0.00013667  0.00012317  7.78e-05  9.01e-05  0.00015672
226 -0.00012494 -0.00008200  0.00002920  8.85e-05  1.59e-05 -0.00009910
227  0.00006900  0.00004850  0.00001870  2.00e-06 -1.32e-05 -0.00006430
228 -0.00001100 -0.00002910 -0.00002840 -1.90e-05 -1.06e-06  0.00000906
229 -0.00001500 -0.00002130 -0.00001640  1.07e-06  7.70e-06  0.00000137
230  0.00006900  0.00004850  0.00001870  2.00e-06 -1.32e-05 -0.00006430
          X.391       X.392       X.393       X.394       X.395       X.396
225  1.6408e-04  0.00008940  0.00000158 -0.00006650 -0.00013158 -0.00021214
226 -9.7300e-05 -0.00000722  0.00007580  0.00014485  0.00017322  0.00015411
227 -1.4726e-04 -0.00021878 -0.00024752 -0.00025020 -0.00024071 -0.00019476
228  6.1200e-06 -0.00000345 -0.00002070 -0.00002870 -0.00000803  0.00003620
229  4.4100e-07  0.00002670  0.00004670  0.00002310 -0.00000573 -0.00000190
230 -1.4726e-04 -0.00021878 -0.00024752 -0.00025020 -0.00024071 -0.00019476
          X.397       X.398       X.399       X.400       X.401       X.402
225 -0.00029856 -0.00034754 -0.00036933 -0.00041358 -0.00044940 -0.00039746
226  0.00011432  0.00006500  0.00009060  0.00017639  0.00017076  0.00008060
227 -0.00011935 -0.00005990 -0.00002640  0.00000861  0.00006680  0.00013283
228  0.00006700  0.00004750 -0.00000617 -0.00004220 -0.00003590 -0.00000785
229  0.00001800  0.00001790  0.00001110  0.00003520  0.00006420  0.00005100
230 -0.00011935 -0.00005990 -0.00002640  0.00000861  0.00006680  0.00013283
          X.403       X.404       X.405       X.406       X.407       X.408
225 -0.00024118 -0.00007890  0.00001350  0.00010632  0.00025256  0.00036343
226 -0.00002350 -0.00014000 -0.00024508 -0.00032434 -0.00035418 -0.00033293
227  0.00016902  0.00017621  0.00016852  0.00013359  0.00008040  0.00003780
228  0.00001830  0.00003580  0.00002780 -0.00001880 -0.00006690 -0.00006370
229  0.00000762 -0.00002120 -0.00003110 -0.00003180 -0.00000576  0.00004400
230  0.00016902  0.00017621  0.00016852  0.00013359  0.00008040  0.00003780
          X.409       X.410       X.411       X.412       X.413       X.414
225  0.00037196  0.00036225  0.00041138  0.00043320  0.00033577  0.00019936
226 -0.00034908 -0.00041154 -0.00042115 -0.00034529 -0.00022590 -0.00008520
227  0.00001680  0.00001620  0.00001840  0.00000290 -0.00001900 -0.00003040
228 -0.00000893  0.00004120  0.00004200  0.00001860  0.00000802  0.00000691
229  0.00004960 -0.00001950 -0.00009230 -0.00010113 -0.00004460  0.00002140
230  0.00001680  0.00001620  0.00001840  0.00000290 -0.00001900 -0.00003040
          X.415       X.416       X.417       X.418       X.419       X.420
225  0.00011344  0.00004220 -0.00004550 -0.00010217 -0.00007910 -0.00003300
226  0.00009320  0.00028092  0.00040445  0.00043921  0.00041155  0.00036378
227 -0.00003410 -0.00003140 -0.00002320 -0.00001700 -0.00001440 -0.00001400
228  0.00001080  0.00001740  0.00001940  0.00001250 -0.00000715 -0.00001700
229  0.00006200  0.00007480  0.00003890 -0.00002720 -0.00005620 -0.00001460
230 -0.00003410 -0.00003140 -0.00002320 -0.00001700 -0.00001440 -0.00001400
          X.421       X.422       X.423       X.424       X.425       X.426
225 -0.00005160 -0.00010202 -0.00013378 -1.5251e-04 -0.00011640 -0.00001630
226  0.00033277  0.00031345  0.00029674  2.7544e-04  0.00019987  0.00005150
227 -0.00002150 -0.00002670 -0.00001190  1.2500e-05  0.00003490  0.00005350
228  0.00000260  0.00001960  0.00001260 -9.9600e-07 -0.00001270 -0.00002000
229  0.00006140  0.00010430  0.00009670  1.0417e-04  0.00015138  0.00018858
230 -0.00002150 -0.00002670 -0.00001190  1.2500e-05  0.00003490  0.00005350
          X.427       X.428       X.429       X.430     X.431     X.432
225  0.00006400  0.00006740  0.00001500 -0.00002610 -4.05e-05 -5.86e-05
226 -0.00014011 -0.00028682 -0.00027077 -0.00013850 -4.14e-05 -2.44e-05
227  0.00006910  0.00008150  0.00008360  0.00007690  7.14e-05  6.70e-05
228 -0.00001860 -0.00001040 -0.00000730 -0.00001970 -2.92e-05 -2.41e-05
229  0.00020427  0.00020737  0.00019059  0.00012966  1.46e-05 -9.63e-05
230  0.00006910  0.00008150  0.00008360  0.00007690  7.14e-05  6.70e-05
         X.433       X.434       X.435       X.436       X.437       X.438
225 -0.0000705 -0.00004500 -0.00001170 -0.00002040 -0.00005550 -0.00008630
226 -0.0000542 -0.00010473 -0.00015362 -0.00015226 -0.00003320  0.00014132
227  0.0000523  0.00002630 -0.00000532 -0.00003740 -0.00006690 -0.00008400
228 -0.0000256 -0.00003810 -0.00003210  0.00000945  0.00006000  0.00008540
229 -0.0001722 -0.00027635 -0.00041376 -0.00049407 -0.00049435 -0.00045666
230  0.0000523  0.00002630 -0.00000532 -0.00003740 -0.00006690 -0.00008400
          X.439       X.440       X.441      X.442       X.443       X.444
225 -0.00012137 -0.00016248 -0.00013845 -1.570e-05  0.00013944  0.00021462
226  0.00017987  0.00008730  0.00001560 -2.830e-05 -0.00005940 -0.00004910
227 -0.00008150 -0.00007830 -0.00008180 -8.370e-05 -0.00008090 -0.00006180
228  0.00009810  0.00011980  0.00013247  1.347e-04  0.00015186  0.00016784
229 -0.00039553 -0.00029451 -0.00014884  8.100e-07  0.00011804  0.00021391
230 -0.00008150 -0.00007830 -0.00008180 -8.370e-05 -0.00008090 -0.00006180
          X.445      X.446       X.447       X.448       X.449       X.450
225  0.00015049 0.00002920 -0.00005280 -0.00004450  0.00005870  0.00017518
226 -0.00000977 0.00002850 -0.00001450 -0.00013428 -0.00016313 -0.00010759
227 -0.00002390 0.00001550  0.00003750  0.00003570  0.00002090  0.00001390
228  0.00014607 0.00007460 -0.00002450 -0.00010966 -0.00016734 -0.00021727
229  0.00028225 0.00029315  0.00027277  0.00026217  0.00025466  0.00022216
230 -0.00002390 0.00001550  0.00003750  0.00003570  0.00002090  0.00001390
          X.451       X.452       X.453       X.454       X.455       X.456
225  0.00019316  0.00008410 -0.00007070 -0.00015367 -0.00012641 -0.00005120
226 -0.00009720 -0.00007910 -0.00004140 -0.00004560 -0.00003740  0.00002270
227  0.00002480  0.00004720  0.00006070  0.00004570  0.00000957 -0.00002570
228 -0.00027013 -0.00031954 -0.00034835 -0.00032591 -0.00025530 -0.00016465
229  0.00015675  0.00008440  0.00002730 -0.00001200 -0.00002330 -0.00001020
230  0.00002480  0.00004720  0.00006070  0.00004570  0.00000957 -0.00002570
          X.457       X.458       X.459       X.460       X.461       X.462
225  0.00003870  0.00008960  0.00004170 -0.00004510 -0.00009690 -0.00008860
226  0.00012871  0.00023155  0.00022662  0.00016197  0.00011613  0.00003760
227 -0.00003850 -0.00002710 -0.00001330 -0.00000511 -0.00000950 -0.00003000
228 -0.00006680  0.00001780  0.00007940  0.00012531  0.00016064  0.00019766
229 -0.00000176 -0.00001560 -0.00005350 -0.00008680 -0.00008760 -0.00007430
230 -0.00003850 -0.00002710 -0.00001330 -0.00000511 -0.00000950 -0.00003000
          X.463       X.464       X.465       X.466     X.467       X.468
225 -0.00002050  0.00005830  0.00010125  0.00008460  1.56e-06 -0.00006070
226 -0.00000752  0.00004220  0.00006340 -0.00000119 -9.45e-05 -0.00016356
227 -0.00003800 -0.00001530  0.00001190  0.00002040  9.15e-06 -0.00000986
228  0.00022177  0.00019698  0.00014325  0.00010388  8.44e-05  0.00006790
229 -0.00006410 -0.00005130 -0.00002210  0.00002360  4.74e-05  0.00003740
230 -0.00003800 -0.00001530  0.00001190  0.00002040  9.15e-06 -0.00000986
          X.469       X.470       X.471       X.472      X.473       X.474
225 -0.00001490  8.3700e-05  0.00015800  0.00018963 0.00016473  0.00010132
226 -0.00018079 -1.7662e-04 -0.00014002 -0.00002190 0.00007430  0.00006410
227 -0.00001270  3.1200e-07  0.00001460  0.00002870 0.00002550 -0.00000689
228  0.00003340  2.1000e-07  0.00000291  0.00001340 0.00000226 -0.00000859
229  0.00003790  6.0400e-05  0.00008530  0.00011342 0.00014317  0.00016088
230 -0.00001270  3.1200e-07  0.00001460  0.00002870 0.00002550 -0.00000689
          X.475     X.476     X.477     X.478       X.479       X.480
225  0.00004630  2.99e-05  5.17e-05  2.30e-05 -0.00012362 -0.00030072
226  0.00001700 -2.52e-05 -4.35e-05 -5.37e-06  0.00006640  0.00011673
227 -0.00002950 -9.75e-06  3.03e-05  5.73e-05  0.00005290  0.00002230
228 -0.00001770 -4.52e-05 -8.41e-05 -9.56e-05 -0.00005920 -0.00002210
229  0.00013266  5.26e-05 -1.18e-05 -1.88e-05 -0.00000863 -0.00003050
230 -0.00002950 -9.75e-06  3.03e-05  5.73e-05  0.00005290  0.00002230
          X.481       X.482       X.483       X.484       X.485       X.486
225 -0.00042183 -0.00047585 -0.00047327 -0.00044845 -0.00038971 -0.00027711
226  0.00011482  0.00006920  0.00003480  0.00003850  0.00006170  0.00010925
227 -0.00000676 -0.00002830 -0.00003860 -0.00001300  0.00002380  0.00002040
228 -0.00002690 -0.00003800 -0.00001330  0.00002450  0.00005010  0.00008310
229 -0.00009170 -0.00016051 -0.00020593 -0.00022027 -0.00019420 -0.00013665
230 -0.00000676 -0.00002830 -0.00003860 -0.00001300  0.00002380  0.00002040
          X.487       X.488       X.489       X.490       X.491      X.492
225 -0.00016544 -0.00002680  0.00017908  0.00034428  0.00042486 0.00045721
226  0.00015105  0.00014555  0.00012683  0.00013365  0.00011523 0.00002230
227 -0.00001680 -0.00004630 -0.00004960 -0.00003450 -0.00001540 0.00000820
228  0.00012866  0.00014575  0.00011993  0.00009770  0.00009420 0.00006900
229 -0.00007920 -0.00003960 -0.00001510  0.00001440  0.00005320 0.00007080
230 -0.00001680 -0.00004630 -0.00004960 -0.00003450 -0.00001540 0.00000820
          X.493       X.494       X.495       X.496       X.497       X.498
225  0.00045541  0.00043906  0.00037629  0.00026967  0.00018640  0.00009350
226 -0.00011265 -0.00023538 -0.00030456 -0.00034163 -0.00038612 -0.00043365
227  0.00003960  0.00004060 -0.00000722 -0.00004580 -0.00003610 -0.00000704
228  0.00001010 -0.00004370 -0.00007100 -0.00009500 -0.00012391 -0.00012688
229  0.00007700  0.00009650  0.00009860  0.00008040  0.00005960  0.00002250
230  0.00003960  0.00004060 -0.00000722 -0.00004580 -0.00003610 -0.00000704
          X.499       X.500       X.501       X.502       X.503       X.504
225 -0.00005320 -0.00016655 -0.00018531 -0.00015524 -0.00012138 -9.1900e-05
226 -0.00048110 -0.00050264 -0.00041714 -0.00019952  0.00005260  2.5154e-04
227  0.00002000  0.00004600  0.00006320  0.00007290  0.00007460  8.3300e-05
228 -0.00010186 -0.00009040 -0.00009190 -0.00007210 -0.00003430  4.0400e-07
229 -0.00001950 -0.00002940  0.00000795  0.00005140  0.00002890 -5.4600e-05
230  0.00002000  0.00004600  0.00006320  0.00007290  0.00007460  8.3300e-05
          X.505       X.506       X.507       X.508      X.509       X.510
225 -0.00005920 -0.00003890 -0.00004110 -0.00001680 0.00006890  0.00016847
226  0.00036454  0.00039656  0.00040028  0.00040317 0.00037592  0.00031040
227  0.00012463  0.00016360  0.00015465  0.00010442 0.00002150 -0.00008630
228  0.00002780  0.00005250  0.00006580  0.00005500 0.00004340  0.00006890
229 -0.00010735 -0.00009050 -0.00004680  0.00000361 0.00006170  0.00007800
230  0.00012463  0.00016360  0.00015465  0.00010442 0.00002150 -0.00008630
          X.511       X.512       X.513      X.514       X.515       X.516
225  0.00022863  0.00024301  0.00020601  0.0000487 -0.00027637 -0.00049754
226  0.00017387 -0.00002780 -0.00013816  0.0000453  0.00062883  0.00096074
227 -0.00020464 -0.00033799 -0.00047256 -0.0005429 -0.00045437 -0.00019757
228  0.00015789  0.00026619  0.00028326  0.0000937 -0.00037772 -0.00071308
229  0.00002890 -0.00001810 -0.00001900 -0.0000224 -0.00009900 -0.00015326
230 -0.00020464 -0.00033799 -0.00047256 -0.0005429 -0.00045437 -0.00019757
          X.517       X.518       X.519       X.520       X.521       X.522
225 -0.00037127 -0.00014409 -0.00004830 -0.00005410 -0.00009430 -0.00011070
226  0.00041367 -0.00030201 -0.00052925 -0.00045969 -0.00029929 -0.00023870
227  0.00006770  0.00019899  0.00022064  0.00023533  0.00027209  0.00035173
228 -0.00046224 -0.00002710  0.00016291  0.00015880  0.00005190 -0.00002930
229 -0.00005270  0.00007170  0.00008620  0.00005720  0.00004210  0.00005830
230  0.00006770  0.00019899  0.00022064  0.00023533  0.00027209  0.00035173
          X.523       X.524       X.525   X.526   X.527  X.528  X.529  X.530
225 -0.00004160  0.00004810  0.00008290 0.84531 0.84910 3.1341 3.6456 1.3239
226 -0.00033153 -0.00030674 -0.00022195 0.77637 0.84507 3.0606 3.8405 1.3064
227  0.00039284  0.00025936  0.00013213 0.72555 0.84004 2.8913 3.7049 1.2511
228  0.00002480  0.00009100  0.00010273 0.81189 0.82726 3.2587 3.5905 1.2684
229  0.00008890  0.00007400  0.00004720 0.73051 0.84793 2.9933 3.9598 1.3825
230  0.00039284  0.00025936  0.00013213 0.72555 0.84004 2.8913 3.7049 1.2511
     X.531   X.532   X.533  X.534  X.535 Label
225 1.8000 0.82037 0.83714 2.6716 2.8114     1
226 1.8080 0.72727 0.81104 2.5046 2.7380     1
227 1.4183 0.64878 0.82323 2.3979 2.3577     1
228 1.5639 0.66174 0.83218 2.4844 2.3322     1
229 1.5922 0.76657 0.80723 2.5448 2.6716     1
230 1.4183 0.64878 0.82323 2.3979 2.3577     1
str(data, list.len = 10)
'data.frame':   230 obs. of  537 variables:
 $ X    : num  -0.000133 -0.000842 -0.000766 -0.000301 -0.000589 ...
 $ X.1  : num  0.000262 -0.001011 -0.000535 -0.000377 -0.000857 ...
 $ X.2  : num  0.001099 -0.001071 0.000162 -0.000451 -0.001135 ...
 $ X.3  : num  0.001834 -0.000944 0.000898 -0.000529 -0.001171 ...
 $ X.4  : num  0.002109 -0.000794 0.001287 -0.000685 -0.001128 ...
 $ X.5  : num  0.002223 -0.00061 0.001582 -0.000845 -0.001039 ...
 $ X.6  : num  0.002233 -0.000445 0.001704 -0.000899 -0.000959 ...
 $ X.7  : num  0.002036 -0.000173 0.001659 -0.000822 -0.000937 ...
 $ X.8  : num  1.58e-03 7.75e-05 1.57e-03 -5.50e-04 -9.16e-04 ...
 $ X.9  : num  0.000969 0.000285 0.001438 -0.000182 -0.000819 ...
  [list output truncated]
# Define the Y variable, taking the first column in the dataset
Y <- data$X

# Remove the new Y variable from the original dataset to avoid multicollinearity issues
data <- data %>% select(-X)

OLS Regression

Now, I will run a basic ordinary least squares (OLS) regression on my data and produce the output in a table

# Generate the formula as a string to make modeling more efficient
formula_string <- paste("Y ~", paste(paste0("X.", 1:535), collapse = " + "))

# Convert the string to a formula
formula <- as.formula(formula_string)

# Create the model equation
reg1 <- lm(formula = formula, data = data)

# Create a table to display the output of the model

# Get all coefficients except those in the specified range
all_vars <- names(coef(reg1))            # Get all variable names
vars_to_exclude <- paste0("X.", 230:535)  # Create a range of variables to exclude
variables_to_display <- setdiff(all_vars, vars_to_exclude)  # Keep all but the specified range

# Display only the selected variables
modelsummary(reg1, coef_map = variables_to_display, output = "markdown")
(1)
(Intercept) 0.000
(0.000)
X.1 2.015
(0.000)
X.2 -1.960
(0.000)
X.3 1.719
(0.000)
X.4 -1.553
(0.000)
X.5 1.490
(0.000)
X.6 -1.653
(0.000)
X.7 1.964
(0.000)
X.8 -2.219
(0.000)
X.9 2.288
(0.000)
X.10 -2.226
(0.000)
X.11 2.161
(0.000)
X.12 -2.129
(0.000)
X.13 1.939
(0.000)
X.14 -1.655
(0.000)
X.15 1.529
(0.000)
X.16 -1.805
(0.000)
X.17 2.325
(0.000)
X.18 -2.760
(0.000)
X.19 2.933
(0.000)
X.20 -2.889
(0.000)
X.21 2.785
(0.000)
X.22 -2.618
(0.000)
X.23 2.214
(0.000)
X.24 -1.762
(0.000)
X.25 1.550
(0.000)
X.26 -1.823
(0.000)
X.27 2.348
(0.000)
X.28 -2.721
(0.000)
X.29 2.842
(0.000)
X.30 -2.702
(0.000)
X.31 2.343
(0.000)
X.32 -1.785
(0.000)
X.33 1.037
(0.000)
X.34 -0.417
(0.000)
X.35 0.131
(0.000)
X.36 -0.377
(0.000)
X.37 0.864
(0.000)
X.38 -1.112
(0.000)
X.39 1.136
(0.000)
X.40 -0.945
(0.000)
X.41 0.479
(0.000)
X.42 0.277
(0.000)
X.43 -1.161
(0.000)
X.44 1.750
(0.000)
X.45 -1.950
(0.000)
X.46 1.561
(0.000)
X.47 -0.829
(0.000)
X.48 0.372
(0.000)
X.49 -0.146
(0.000)
X.50 0.121
(0.000)
X.51 -0.485
(0.000)
X.52 1.244
(0.000)
X.53 -2.084
(0.000)
X.54 2.571
(0.000)
X.55 -2.709
(0.000)
X.56 2.246
(0.000)
X.57 -1.329
(0.000)
X.58 0.661
(0.000)
X.59 -0.142
(0.000)
X.60 -0.215
(0.000)
X.61 0.017
(0.000)
X.62 0.675
(0.000)
X.63 -1.409
(0.000)
X.64 1.823
(0.000)
X.65 -1.983
(0.000)
X.66 1.573
(0.000)
X.67 -0.631
(0.000)
X.68 -0.109
(0.000)
X.69 0.790
(0.000)
X.70 -1.322
(0.000)
X.71 1.123
(0.000)
X.72 -0.367
(0.000)
X.73 -0.391
(0.000)
X.74 0.904
(0.000)
X.75 -1.217
(0.000)
X.76 0.895
(0.000)
X.77 0.037
(0.000)
X.78 -0.760
(0.000)
X.79 1.455
(0.000)
X.80 -1.989
(0.000)
X.81 1.663
(0.000)
X.82 -0.791
(0.000)
X.83 -0.017
(0.000)
X.84 0.681
(0.000)
X.85 -1.160
(0.000)
X.86 0.807
(0.000)
X.87 0.256
(0.000)
X.88 -1.022
(0.000)
X.89 1.731
(0.000)
X.90 -2.279
(0.000)
X.91 1.968
(0.000)
X.92 -1.208
(0.000)
X.93 0.544
(0.000)
X.94 0.102
(0.000)
X.95 -0.612
(0.000)
X.96 0.240
(0.000)
X.97 0.803
(0.000)
X.98 -1.512
(0.000)
X.99 2.231
(0.000)
X.100 -2.819
(0.000)
X.101 2.534
(0.000)
X.102 -1.788
(0.000)
X.103 1.078
(0.000)
X.104 -0.317
(0.000)
X.105 -0.345
(0.000)
X.106 0.148
(0.000)
X.107 0.687
(0.000)
X.108 -1.228
(0.000)
X.109 1.858
(0.000)
X.110 -2.372
(0.000)
X.111 2.045
(0.000)
X.112 -1.325
(0.000)
X.113 0.660
(0.000)
X.114 0.114
(0.000)
X.115 -0.841
(0.000)
X.116 0.742
(0.000)
X.117 -0.076
(0.000)
X.118 -0.321
(0.000)
X.119 0.885
(0.000)
X.120 -1.370
(0.000)
X.121 1.062
(0.000)
X.122 -0.494
(0.000)
X.123 0.117
(0.000)
X.124 0.402
(0.000)
X.125 -0.990
(0.000)
X.126 0.817
(0.000)
X.127 -0.145
(0.000)
X.128 -0.254
(0.000)
X.129 0.854
(0.000)
X.130 -1.383
(0.000)
X.131 1.156
(0.000)
X.132 -0.770
(0.000)
X.133 0.615
(0.000)
X.134 -0.297
(0.000)
X.135 -0.130
(0.000)
X.136 -0.055
(0.000)
X.137 0.615
(0.000)
X.138 -0.962
(0.000)
X.139 1.541
(0.000)
X.140 -2.035
(0.000)
X.141 1.840
(0.000)
X.142 -1.565
(0.000)
X.143 1.522
(0.000)
X.144 -1.267
(0.000)
X.145 0.801
(0.000)
X.146 -0.788
(0.000)
X.147 1.093
(0.000)
X.148 -1.321
(0.000)
X.149 1.877
(0.000)
X.150 -2.344
(0.000)
X.151 2.145
(0.000)
X.152 -1.895
(0.000)
X.153 1.856
(0.000)
X.154 -1.591
(0.000)
X.155 1.057
(0.000)
X.156 -0.787
(0.000)
X.157 0.747
(0.000)
X.158 -0.775
(0.000)
X.159 1.237
(0.000)
X.160 -1.576
(0.000)
X.161 1.253
(0.000)
X.162 -0.908
(0.000)
X.163 0.773
(0.000)
X.164 -0.493
(0.000)
X.165 -0.058
(0.000)
X.166 0.534
(0.000)
X.167 -0.843
(0.000)
X.168 0.990
(0.000)
X.169 -0.662
(0.000)
X.170 0.413
(0.000)
X.171 -0.762
(0.000)
X.172 1.155
(0.000)
X.173 -1.355
(0.000)
X.174 1.577
(0.000)
X.175 -1.964
(0.000)
X.176 2.356
(0.000)
X.177 -2.659
(0.000)
X.178 2.762
(0.000)
X.179 -2.369
(0.000)
X.180 2.007
(0.000)
X.181 -2.215
(0.000)
X.182 2.579
(0.000)
X.183 -2.758
(0.000)
X.184 2.834
(0.000)
X.185 -3.056
(0.000)
X.186 3.325
(0.000)
X.187 -3.465
(0.000)
X.188 3.394
(0.000)
X.189 -2.934
(0.000)
X.190 2.492
(0.000)
X.191 -2.501
(0.000)
X.192 2.729
(0.000)
X.193 -2.835
(0.000)
X.194 2.761
(0.000)
X.195 -2.772
(0.000)
X.196 2.869
(0.000)
X.197 -2.876
(0.000)
X.198 2.688
(0.000)
X.199 -2.220
(0.000)
X.200 1.809
(0.000)
X.201 -1.747
(0.000)
X.202 1.871
(0.000)
X.203 -1.906
(0.000)
X.204 1.732
(0.000)
X.205 -1.639
(0.000)
X.206 1.694
(0.000)
X.207 -1.663
(0.000)
X.208 1.477
(0.000)
X.209 -1.132
(0.000)
X.210 0.842
(0.000)
X.211 -0.775
(0.000)
X.212 0.817
(0.000)
X.213 -0.831
(0.000)
X.214 0.736
(0.000)
X.215 -0.659
(0.000)
X.216 0.642
(0.000)
X.217 -0.561
(0.000)
X.218 0.412
(0.000)
X.219 -0.220
(0.000)
X.220 0.069
(0.000)
X.221 -0.023
(0.000)
X.222 0.010
(0.000)
X.223 -0.002
(0.000)
X.224 0.003
(0.000)
Num.Obs. 230
R2 1.000
R2 Adj. 1.000
AIC -17269.4
BIC -16492.4
Log.Lik. 8860.713
RMSE 0.00
?stargazer

Cite: Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

My regression is not able to estimate all betas. It is only able to estimate betas and standard errors for about 224 variables, slightly less than the number of observations. While OLS is the classic linear regression method that aims to minimize the sum of squared residuals (SSRs) and estimate coefficients for predictor variables, it does not address issues like multicollinearity or feature selection, which can lead to overfitting in high-dimensional datasets. When there are more variables than observations, there can be infinitely many solutions to our data matrix - meaning the matrix is singular or does not have an inverse. Without enough observations (at least more than variables) we don’t have enough information to understand each independent X variable’s effect on our Y dependent variable.

II. Scaling and Regularization Techniques

For this example, before applying our regularization techniques, we want to scale the data by standardization, also known as z-score normalization. This will cause our data to have a mean of 0 and a standard deviation of 1. This will bring all of our variables to a comparable level, making it easier for the algorithm to learn patterns about this data more effectively.

Scaling Independent Variables

# Independent variables before standardization
    colMeans(x = data)    # mean
    apply(X = data,
          MARGIN = 2,
          FUN = sd       # var
          )           # standard deviation
 
# scale : mean = 0, std=1
?scale    
    X = scale(x = data)
 
# after standardization
    colMeans(x = X)    # mean ~ 0
    apply(X = X,
          MARGIN = 2,
          FUN = sd
          )  # standard deviation = 1
    
# Make X a dataframe
df_X <- as.data.frame(X)
# Verify that the mean is now 0 and standard deviation is now 1
describe(df_X[, c("X.1", "X.2", "X.3", "X.4")])
    vars   n mean sd median trimmed  mad   min  max range skew kurtosis   se
X.1    1 230    0  1  -0.20   -0.18 0.40 -2.42 4.48  6.90 2.19     5.43 0.07
X.2    2 230    0  1  -0.19   -0.14 0.68 -1.80 3.54  5.34 1.46     2.45 0.07
X.3    3 230    0  1  -0.25   -0.12 0.84 -1.58 3.39  4.97 1.15     1.32 0.07
X.4    4 230    0  1  -0.27   -0.12 0.84 -1.61 3.31  4.92 1.10     1.06 0.07

Dependent Variable

# Apply the scaling function to Y
Y <- scale(Y)

# Apply the summary function to Y to verify the mean is now 0
summary(Y)
       V1         
 Min.   :-2.6920  
 1st Qu.:-0.5123  
 Median :-0.2474  
 Mean   : 0.0000  
 3rd Qu.: 0.1022  
 Max.   : 5.2371  

Finding the Best Lambda and Performing Lasso

Next, we’ll find the best lambda and perform Lasso (Least Absolute Shrinkage and Selection Operator) regression on our model. The best lambda refers to the ideal value of the regularization parameter that results in the best model performance. The goal of selecting an optimal lambda is to strike a balance between fitting the model well to the training data and preventing overfitting. Lasso is a regularization technique that can prevent overfitting in our linear regression model.

x_matrix <- as.matrix(data)

cv_model <- cv.glmnet(x = x_matrix,
                      y = Y, 
                      alpha = 1
                      )

# find optimal lambda value that minimizes test MSE
best_lambda <- cv_model$lambda.min
best_lambda
[1] 0.009292894
#perform lasso
  la.eq <- glmnet(x         = x_matrix, 
                  y         = Y, 
                  lambda    = best_lambda, 
                  family    = "gaussian", 
                  intercept = F, 
                  alpha     = 1
                  ) 
    summary(la.eq) 
          Length Class     Mode   
a0          1    -none-    numeric
beta      536    dgCMatrix S4     
df          1    -none-    numeric
dim         2    -none-    numeric
lambda      1    -none-    numeric
dev.ratio   1    -none-    numeric
nulldev     1    -none-    numeric
npasses     1    -none-    numeric
jerr        1    -none-    numeric
offset      1    -none-    logical
call        7    -none-    call   
nobs        1    -none-    numeric
    # STORING COEFFICIENTS CHOSEN BY LASSO FOR MULTIVARIATE LINEAR REGRESSION  
    
    W <- as.matrix(coef(object = la.eq)) # coef is a generic function which extracts model coefficients from objects returned by modeling functions
  
    keep_X <- rownames(W)[W!=0] # non-zero coefficients
    keep_X <- keep_X[!keep_X == "(Intercept)"]
    X_O <- df_X[,keep_X]     # X <- X %>% select(all_of(keep_X))
    X_O <- as.matrix(X_O)
    df<-cbind.data.frame(Y,X_O)
    la.eq_O <- summary(lm(Y~X_O,
                          data = df)
                       )
    la.eq_O

Call:
lm(formula = Y ~ X_O, data = df)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.060874 -0.007690 -0.000657  0.009364  0.059229 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.708e-17  1.115e-03   0.000 1.000000    
X_OX.1       1.202e+00  9.386e-03 128.039  < 2e-16 ***
X_OX.15     -5.694e-03  2.103e-03  -2.707 0.007339 ** 
X_OX.21      9.708e-03  3.159e-03   3.073 0.002393 ** 
X_OX.44      4.179e-02  1.152e-02   3.629 0.000356 ***
X_OX.45     -4.018e-02  1.163e-02  -3.456 0.000661 ***
X_OX.55      3.197e-02  1.033e-02   3.094 0.002240 ** 
X_OX.56     -2.788e-02  1.006e-02  -2.772 0.006059 ** 
X_OX.92     -3.743e-03  1.333e-03  -2.809 0.005434 ** 
X_OX.112    -2.943e-03  1.293e-03  -2.276 0.023822 *  
X_OX.263    -8.106e-01  1.661e-02 -48.794  < 2e-16 ***
X_OX.264     4.800e-01  1.752e-02  27.395  < 2e-16 ***
X_OX.296    -2.841e-03  2.557e-03  -1.111 0.267776    
X_OX.526    -1.205e-04  1.455e-03  -0.083 0.934040    
X_OX.527     1.054e-03  1.435e-03   0.735 0.463407    
X_OX.530    -5.315e-04  1.199e-03  -0.443 0.658039    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01691 on 214 degrees of freedom
Multiple R-squared:  0.9997,    Adjusted R-squared:  0.9997 
F-statistic: 5.34e+04 on 15 and 214 DF,  p-value: < 2.2e-16

In our model example above, applying Lasso regression caused the majority of our variables to drop, however we were able to estimate several more variables, including those above the number of observations we had. The coefficients themselves are different in the Lasso method, overall much less extreme. For example, under OLS, the X.1 coefficient was 1,455.815 and X.15 was 1,104.497. These are both very large coefficients. Under the Lasso model, X.1 is 1.202e+00 and X.15 is -5.694e-03. There’s also a standard error for Lasso, unlike OLS where it returned a standard error but it was 0. Overall, I prefer the Lasso method to OLS because it provides a simpler model, with more believable coefficients and errors, reducing complexity.

Changing Independent Variable Units

# Transform our independent variable X.44 by multipling by 1000

data$X.44 <- data$X.44 * 1000

# Rerun the lambda and modeling code

x_matrix <- as.matrix(data)

cv_model <- cv.glmnet(x = x_matrix,
                      y = Y, 
                      alpha = 1
                      )

# find optimal lambda value that minimizes test MSE
best_lambda <- cv_model$lambda.min
best_lambda
[1] 0.009292894
#perform lasso
  la.eq <- glmnet(x         = x_matrix, 
                  y         = Y, 
                  lambda    = best_lambda, 
                  family    = "gaussian", 
                  intercept = F, 
                  alpha     = 1
                  ) 
    summary(la.eq) 
          Length Class     Mode   
a0          1    -none-    numeric
beta      536    dgCMatrix S4     
df          1    -none-    numeric
dim         2    -none-    numeric
lambda      1    -none-    numeric
dev.ratio   1    -none-    numeric
nulldev     1    -none-    numeric
npasses     1    -none-    numeric
jerr        1    -none-    numeric
offset      1    -none-    logical
call        7    -none-    call   
nobs        1    -none-    numeric
    # STORING COEFFICIENTS CHOSEN BY LASSO FOR MULTIVARIATE LINEAR REGRESSION  
    
    W <- as.matrix(coef(object = la.eq)) # coef is a generic function which extracts model coefficients from objects returned by modeling functions
    
    
    keep_X <- rownames(W)[W!=0] # non-zero coefficients
    keep_X <- keep_X[!keep_X == "(Intercept)"]
    X_O <- data[,keep_X]     # X <- X %>% select(all_of(keep_X))
    X_O <- as.matrix(X_O)
    df<-cbind.data.frame(Y,X_O)
    la.eq_O <- summary(lm(Y~X_O,
                          data = df)
                       )
    la.eq_O

Call:
lm(formula = Y ~ X_O, data = df)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.060874 -0.007690 -0.000657  0.009364  0.059229 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  3.114e-01  3.127e-02   9.959  < 2e-16 ***
X_OX.1       5.975e+02  4.666e+00 128.039  < 2e-16 ***
X_OX.15     -1.769e+00  6.535e-01  -2.707 0.007339 ** 
X_OX.21      3.670e+00  1.194e+00   3.073 0.002393 ** 
X_OX.44      1.220e-02  3.362e-03   3.629 0.000356 ***
X_OX.45     -1.134e+01  3.282e+00  -3.456 0.000661 ***
X_OX.55      9.133e+00  2.952e+00   3.094 0.002240 ** 
X_OX.56     -7.969e+00  2.875e+00  -2.772 0.006059 ** 
X_OX.92     -1.484e+00  5.282e-01  -2.809 0.005434 ** 
X_OX.112    -1.020e+00  4.481e-01  -2.276 0.023822 *  
X_OX.263    -4.088e+03  8.377e+01 -48.794  < 2e-16 ***
X_OX.264     2.736e+03  9.986e+01  27.395  < 2e-16 ***
X_OX.296    -2.093e+01  1.884e+01  -1.111 0.267776    
X_OX.526    -2.323e-03  2.804e-02  -0.083 0.934040    
X_OX.527     2.739e-02  3.729e-02   0.735 0.463407    
X_OX.530    -5.466e-03  1.233e-02  -0.443 0.658039    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01691 on 214 degrees of freedom
Multiple R-squared:  0.9997,    Adjusted R-squared:  0.9997 
F-statistic: 5.34e+04 on 15 and 214 DF,  p-value: < 2.2e-16

I rescaled my variable by multiplying by 1000 and it is still present in my coefficient model output, however, it did move closer to 0, being still quite small. Without standardization, variables with different scales (like X.44) could still be biasing the coefficient estimates due to its unequal contributions to the model. In Lasso, without standardization, variables with larger scales can be more likely to have their coefficients reduced to zero, leading to unfair feature selection. We see this happening here.