library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(ggplot2)

Hot<-read_excel("HOTax.xlsx")

Hot_Cleaned<-Hot%>%filter(!is.na(`Tax Code Ch. 351 Revenue`)&!is.na(`Advertising Revenue`))

Advertising<-Hot_Cleaned$`Advertising Revenue`

Tax<-Hot_Cleaned$`Tax Code Ch. 351 Revenue`

Signage<-Hot_Cleaned$`Signage Revenue`

Arts<-Hot_Cleaned$`Arts Revenue`

lm('Tax ~ Advertising + Signage + Arts ', data = Hot_Cleaned)
## 
## Call:
## lm(formula = "Tax ~ Advertising + Signage + Arts ", data = Hot_Cleaned)
## 
## Coefficients:
## (Intercept)  Advertising      Signage         Arts  
##   3.862e+06    2.346e+00   -1.937e+01    2.123e+00
model_1<-lm('Tax ~ Advertising + Signage + Arts', data = Hot_Cleaned)

summary(model_1)
## 
## Call:
## lm(formula = "Tax ~ Advertising + Signage + Arts", data = Hot_Cleaned)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
##  -28073769   -3862104   -3770423   -3423748 1653519914 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)  3.862e+06  3.752e+06   1.029    0.304
## Advertising  2.346e+00  2.746e+00   0.854    0.393
## Signage     -1.937e+01  1.221e+02  -0.159    0.874
## Arts         2.123e+00  4.906e+00   0.433    0.665
## 
## Residual standard error: 76160000 on 473 degrees of freedom
##   (1034 observations deleted due to missingness)
## Multiple R-squared:  0.0139, Adjusted R-squared:  0.007645 
## F-statistic: 2.222 on 3 and 473 DF,  p-value: 0.08477
#The variables that I have selected resulted in a lack of statistical significance.

plot(model_1,which=1)