# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("AAPL", "MSFT", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
w <- c(0.35,
0.35,
0.30)
w_tbl <- tibble(symbols, w)
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
col_rename = "returns",
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 142 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0231
## 2 2013-02-28 0.0178
## 3 2013-03-28 0.00654
## 4 2013-04-30 0.0570
## 5 2013-05-31 0.0450
## 6 2013-06-28 -0.0435
## 7 2013-07-31 0.0247
## 8 2013-08-30 0.0281
## 9 2013-09-30 0.00311
## 10 2013-10-31 0.108
## # ℹ 132 more rows
rfr <- 0.0003
portfolio_sharpe_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rf = rfr,
performance_fun = SharpeRatio,
FUN = "StdDev")
portfolio_sharpe_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.328
calculate_rolling_sharpeRatio <- function(df) {
SharpeRatio(df,
Rf = rfr,
FUN = "StdDev")}
window <- 24
rolling_sharpe_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
align = "right",
FUN = calculate_rolling_sharpeRatio,
col_rename = "sharpeRatio") %>%
na.omit()
rolling_sharpe_tbl
## # A tibble: 119 × 3
## date returns sharpeRatio
## <date> <dbl> <dbl>
## 1 2014-12-31 -0.0449 0.569
## 2 2015-01-30 -0.0156 0.585
## 3 2015-02-27 0.0756 0.622
## 4 2015-03-31 -0.0404 0.534
## 5 2015-04-30 0.0499 0.530
## 6 2015-05-29 0.00285 0.486
## 7 2015-06-30 -0.0389 0.496
## 8 2015-07-31 0.0695 0.526
## 9 2015-08-31 -0.0473 0.417
## 10 2015-09-30 -0.00827 0.403
## # ℹ 109 more rows
rolling_sharpe_tbl %>%
ggplot(aes(date, sharpeRatio)) +
geom_line(color = "magenta") +
labs(title = paste0("Rolling ", " Sharpe Ratio"),
y = "rolling Sharpe Ratio",
x = NULL) +
theme(plot.title = element_text(hjust = 0.5))
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is? My portfolio has had a lot of ups and downs overtime. One of the breaks falls around the same time at Code Along 9 in November of 2016, I am going to assume this is for the same reason, the election. There is then another break surrounding 2020, I would attribute this to the pandemic. Lastly there is most recently a break starting in 2023. I am unsure of the cause of this break, but it is finally starting to turn around because all of 2024 has only shown growth.