0.Loading the required libraries

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ ggplot2   3.5.1     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tmap)
## Breaking News: tmap 3.x is retiring. Please test v4, e.g. with
## remotes::install_github('r-tmap/tmap')
library(units)
## udunits database from C:/Users/srini/AppData/Local/R/win-library/4.4/units/share/udunits/udunits2.xml
library(sf)
## Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.3.1; sf_use_s2() is TRUE
library(leaflet)
library(dbscan)
## 
## Attaching package: 'dbscan'
## 
## The following object is masked from 'package:stats':
## 
##     as.dendrogram
library(sfnetworks)
library(tigris)
## To enable caching of data, set `options(tigris_use_cache = TRUE)`
## in your R script or .Rprofile.
library(tidygraph)
## 
## Attaching package: 'tidygraph'
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
library(osmdata)
## Data (c) OpenStreetMap contributors, ODbL 1.0. https://www.openstreetmap.org/copyright
library(here)
## here() starts at C:/Users/srini/OneDrive/Documents/Urban Analytics
library(tidytransit)
library(tidycensus)
library(leafsync)
library(gtfsrouter)
## Registered S3 method overwritten by 'gtfsrouter':
##   method       from  
##   summary.gtfs gtfsio
epsg <- 4326

Task description

There are a few main components in this assignment - home location, road networks, transit network, and destination. We will simulate a journey that starts from the starting point (e.g., home), drives to the nearest MARTA rail station, transfers to MARTA rail transit, and finally arrives at Midtown station. The following is a list of tasks and data we need for this analysis.

Step 1. Download Required data from GTFS. Convert it to sf format, extract MARTA rail stations, and clean the stop names to delete duplicate names. Also extract the destination station.

Step 2. Download Required data from Census. Convert Census polygons into centroids and create a subset.

Step 3. Download Required data from OSM. Convert it into an sfnetwork object and clean the network.

Step 4. Simulate a park-and-ride trip (home -> closest station -> Midtown station).

Step 5. Convert what we did in Step 4 into a function so that we can use it to repeat it in a loop.

Step 6. Run a loop to repeat the function from Step 5 to all other home location. Once finished, merge the simulation output back to Census data.

Step 7. Finally, examine whether there is any disparity in using transit to commute to midtown.

1.Download Required data from GTFS

# TASK ////////////////////////////////////////////////////////////////////////
# Download MARTA (Metropolitan Atlanta Rapid Transit Authority) GTFS data using `read_gtfs()` function and assign it to `gtfs` object
gtfs <- read_gtfs((here('MARTA_GTFS_Latest_Feed.zip')))
# //TASK //////////////////////////////////////////////////////////////////////



# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Edit stop_name to append serial numbers (1, 2, etc.) to remove duplicate names
stop_dist <- stop_group_distances(gtfs$stops, by='stop_name') %>%
  filter(dist_max > 200)

gtfs$stops <- gtfs$stops %>% 
  group_by(stop_name) %>% 
  mutate(stop_name = case_when(stop_name %in% stop_dist$stop_name ~ paste0(stop_name, " (", seq(1,n()), ")"),
                               TRUE ~ stop_name))

# Create a transfer table
gtfs <- gtfsrouter::gtfs_transfer_table(gtfs, 
                                        d_limit = 200, 
                                        min_transfer_time = 120)

# NOTE: Converting to sf format uses stop_lat and stop_lon columns contained in gtfs$stops.
#       In the conversion process, stop_lat and stop_lon are converted into a geometry column, and
#       the output sf object do not have the lat lon column anymore.
#       But many other functions in tidytransit look for stop_lat and stop_lon.
#       So I re-create them using mutate().
gtfs <- gtfs %>% gtfs_as_sf(crs = epsg)

gtfs$stops <- gtfs$stops %>% 
  ungroup() %>% 
  mutate(stop_lat = st_coordinates(.)[,2],
         stop_lon = st_coordinates(.)[,1]) 

# Get stop_id for rails and buses
rail_stops <- gtfs$routes %>% 
  filter(route_type %in% c(1)) %>% 
  inner_join(gtfs$trips, by = "route_id") %>% 
  inner_join(gtfs$stop_times, by = "trip_id") %>% 
  inner_join(gtfs$stops, by = "stop_id") %>% 
  group_by(stop_id) %>% 
  slice(1) %>% 
  pull(stop_id)

# Extract MARTA rail stations
station <- gtfs$stops %>% filter(stop_id %in% rail_stops)

# Extract Midtown Station
midtown <- gtfs$stops %>% filter(stop_id == "134")

# Create a bounding box to which we limit our analysis
bbox <- st_bbox(c(xmin = -84.45241, ymin = 33.72109, xmax = -84.35009, ymax = 33.80101), 
                 crs = st_crs(4326)) %>% 
  st_as_sfc()

# =========== NO MODIFY ZONE ENDS HERE ========================================

2.Downloading Required data from Census

# TASK ////////////////////////////////////////////////////////////////////////
# Specify Census API key whichever you prefer using census_api_key() function
census_api <- Sys.getenv("census_api")
census_api_key(census_api)
## To install your API key for use in future sessions, run this function with `install = TRUE`.
# //TASK //////////////////////////////////////////////////////////////////////



# TASK ////////////////////////////////////////////////////////////////////////
# Using get_acs() function, download Census Tract level data for 2022 for Fulton, DeKalb, and Clayton in GA.
# and assign it to `census` object.
# Make sure you set geometry = TRUE.

# Required data from the Census ACS:
#  1) Median Household Income (name the column `hhinc`)
#  2) Minority Population (%) (name the column `pct_minority`)
# Note: You may need to download two or more Census ACS variables to calculate minority population (%). "Minority" here can refer to either racial minorities or racial+ethnic minorities -- it's your choice.

census <- suppressMessages(
  get_acs(
    geography = "tract", # or "block group", "county", "state" etc.
    state = "GA",
    county = c("Fulton", "DeKalb", "Clayton"),
    variables = c(
      "hhinc" = "B19019_001",   # Median Household Income
      "r_tot" = "B02001_001",   # Total Population
      "r_wh" = "B02001_002",    # White Population
      "r_bl" = "B02001_003"     # Black Population
    ),
    year = 2021,
    survey = "acs5",            # American Community Survey 5-year estimate
    geometry = TRUE,            # returns sf objects
    output = "wide"             # format data as "wide"
  )
)
##   |                                                                              |                                                                      |   0%  |                                                                              |                                                                      |   1%  |                                                                              |=                                                                     |   2%  |                                                                              |==                                                                    |   2%  |                                                                              |==                                                                    |   3%  |                                                                              |==                                                                    |   4%  |                                                                              |===                                                                   |   4%  |                                                                              |===                                                                   |   5%  |                                                                              |====                                                                  |   5%  |                                                                              |====                                                                  |   6%  |                                                                              |=====                                                                 |   7%  |                                                                              |======                                                                |   8%  |                                                                              |======                                                                |   9%  |                                                                              |=======                                                               |   9%  |                                                                              |=======                                                               |  10%  |                                                                              |========                                                              |  11%  |                                                                              |=========                                                             |  12%  |                                                                              |=========                                                             |  13%  |                                                                              |==========                                                            |  14%  |                                                                              |===========                                                           |  15%  |                                                                              |===========                                                           |  16%  |                                                                              |============                                                          |  17%  |                                                                              |=============                                                         |  18%  |                                                                              |=============                                                         |  19%  |                                                                              |==============                                                        |  20%  |                                                                              |===============                                                       |  21%  |                                                                              |===============                                                       |  22%  |                                                                              |================                                                      |  23%  |                                                                              |=================                                                     |  24%  |                                                                              |=================                                                     |  25%  |                                                                              |==================                                                    |  26%  |                                                                              |===================                                                   |  27%  |                                                                              |===================                                                   |  28%  |                                                                              |====================                                                  |  29%  |                                                                              |=====================                                                 |  30%  |                                                                              |=====================                                                 |  31%  |                                                                              |======================                                                |  31%  |                                                                              |======================                                                |  32%  |                                                                              |=======================                                               |  33%  |                                                                              |========================                                              |  34%  |                                                                              |========================                                              |  35%  |                                                                              |=========================                                             |  35%  |                                                                              |=========================                                             |  36%  |                                                                              |==========================                                            |  37%  |                                                                              |==========================                                            |  38%  |                                                                              |===========================                                           |  38%  |                                                                              |===========================                                           |  39%  |                                                                              |============================                                          |  39%  |                                                                              |============================                                          |  40%  |                                                                              |============================                                          |  41%  |                                                                              |=============================                                         |  41%  |                                                                              |=============================                                         |  42%  |                                                                              |==============================                                        |  42%  |                                                                              |==============================                                        |  43%  |                                                                              |===============================                                       |  44%  |                                                                              |===============================                                       |  45%  |                                                                              |================================                                      |  45%  |                                                                              |================================                                      |  46%  |                                                                              |=================================                                     |  47%  |                                                                              |=================================                                     |  48%  |                                                                              |==================================                                    |  48%  |                                                                              |==================================                                    |  49%  |                                                                              |===================================                                   |  50%  |                                                                              |===================================                                   |  51%  |                                                                              |====================================                                  |  51%  |                                                                              |====================================                                  |  52%  |                                                                              |=====================================                                 |  53%  |                                                                              |======================================                                |  54%  |                                                                              |======================================                                |  55%  |                                                                              |=======================================                               |  55%  |                                                                              |=======================================                               |  56%  |                                                                              |========================================                              |  56%  |                                                                              |========================================                              |  57%  |                                                                              |========================================                              |  58%  |                                                                              |=========================================                             |  58%  |                                                                              |=========================================                             |  59%  |                                                                              |==========================================                            |  59%  |                                                                              |==========================================                            |  60%  |                                                                              |===========================================                           |  61%  |                                                                              |===========================================                           |  62%  |                                                                              |============================================                          |  62%  |                                                                              |============================================                          |  63%  |                                                                              |=============================================                         |  64%  |                                                                              |==============================================                        |  65%  |                                                                              |==============================================                        |  66%  |                                                                              |===============================================                       |  67%  |                                                                              |================================================                      |  68%  |                                                                              |================================================                      |  69%  |                                                                              |=================================================                     |  70%  |                                                                              |==================================================                    |  71%  |                                                                              |==================================================                    |  72%  |                                                                              |===================================================                   |  72%  |                                                                              |===================================================                   |  73%  |                                                                              |====================================================                  |  74%  |                                                                              |====================================================                  |  75%  |                                                                              |=====================================================                 |  75%  |                                                                              |=====================================================                 |  76%  |                                                                              |======================================================                |  77%  |                                                                              |=======================================================               |  78%  |                                                                              |=======================================================               |  79%  |                                                                              |========================================================              |  80%  |                                                                              |=========================================================             |  81%  |                                                                              |=========================================================             |  82%  |                                                                              |==========================================================            |  83%  |                                                                              |===========================================================           |  84%  |                                                                              |===========================================================           |  85%  |                                                                              |============================================================          |  85%  |                                                                              |============================================================          |  86%  |                                                                              |=============================================================         |  87%  |                                                                              |=============================================================         |  88%  |                                                                              |==============================================================        |  88%  |                                                                              |==============================================================        |  89%  |                                                                              |===============================================================       |  89%  |                                                                              |===============================================================       |  90%  |                                                                              |===============================================================       |  91%  |                                                                              |================================================================      |  91%  |                                                                              |================================================================      |  92%  |                                                                              |=================================================================     |  92%  |                                                                              |=================================================================     |  93%  |                                                                              |==================================================================    |  94%  |                                                                              |==================================================================    |  95%  |                                                                              |===================================================================   |  95%  |                                                                              |===================================================================   |  96%  |                                                                              |====================================================================  |  97%  |                                                                              |===================================================================== |  98%  |                                                                              |===================================================================== |  99%  |                                                                              |======================================================================| 100%
names(census)
##  [1] "GEOID"    "NAME"     "hhincE"   "hhincM"   "r_totE"   "r_totM"  
##  [7] "r_whE"    "r_whM"    "r_blE"    "r_blM"    "geometry"
# Calculate pct_minority
census <- census %>%
  mutate(pct_minority = (1 - (r_whE / r_totE)) * 100)


# //TASK //////////////////////////////////////////////////////////////////////



# =========== NO MODIFICATION ZONE STARTS HERE ===============================
census <- census %>% 
  st_transform(crs = 4326) %>% 
  separate(col = NAME, into = c("tract", "county", "state"), sep = ", ")

# Convert it to POINT at polygon centroids and extract those that fall into bbox
# and assign it into `home` object
home <- census %>% st_centroid() %>% .[bbox,]
## Warning: st_centroid assumes attributes are constant over geometries
# =========== NO MODIFY ZONE ENDS HERE ========================================

3. Download Required data from OSM

# TASK ////////////////////////////////////////////////////////////////////////
# 1. Get OSM data using opq() function and bbox object defined in the previous code chunk.
# 2. Specify arguments for add_osm_feature() function using 
#    key = 'highway' and 
#    value = c("motorway", "trunk", "primary", "secondary", "tertiary", "residential", 
#              "motorway_link", "trunk_link", "primary_link", "secondary_link", 
#              "tertiary_link", "residential_link", "unclassified")
# 3. Convert the OSM data into an sf object using osmdata_sf() function
# 4. Convert osmdata polygons into lines using osm_poly2line() function

osm_road <- opq(bbox) %>%
  add_osm_feature(key = 'highway', 
                  value = c("motorway", "trunk", "primary", 
                          "secondary","tertiary","residential","motorway_link","trunk_link","primary_link","secondary_link","tertiary_link","residential_link","unclassified")
                            ) %>%
  osmdata_sf() %>% 
  osm_poly2line()

names(osm_road)
## [1] "bbox"              "overpass_call"     "meta"             
## [4] "osm_points"        "osm_lines"         "osm_polygons"     
## [7] "osm_multilines"    "osm_multipolygons"
# TASK ////////////////////////////////////////////////////////////////////////
# 1. Convert osm_road$osm_lines into sfnetwork using as_sfnetwork() function
# 2. Activate edges
# 3. Clean the network using edge_is_multiple(), edge_is_loop(), to_spatial_subdivision(), to_spatial_smooth()
# 4. Assign the cleaned network to an object named 'osm'

osm <- osm_road$osm_line %>%
  select(geometry) %>%  # Keep only essential columns
  sfnetworks::as_sfnetwork(directed = FALSE) %>%
  activate("edges") %>%
  filter(!edge_is_multiple()) %>%
  filter(!edge_is_loop()) %>%
  convert(sfnetworks::to_spatial_subdivision) %>% 
  convert(sfnetworks::to_spatial_smooth)
  # ...
# //TASK //////////////////////////////////////////////////////////////////////
# TASK ////////////////////////////////////////////////////////////////////////
# Add a new column named 'length' to the edges part of the object `osm`.
osm <- osm %>% 
  activate("edges") %>%
  # Add length column
  mutate(length = edge_length())
# //TASK //////////////////////////////////////////////////////////////////////

4. Simulate a park-and-ride trip (home -> closest station -> Midtown station)

# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Extract the first row from `home` object and store it `home_1`
home_1 <- home[1,]
# =========== NO MODIFY ZONE ENDS HERE ========================================


# TASK ////////////////////////////////////////////////////////////////////////
# Find the shortest path from `home_1` to all other stations
# using st_network_paths() function.
paths <- st_network_paths(osm, from = home_1, to = station, type = "shortest")
# //TASK //////////////////////////////////////////////////////////////////////
# //TASK //////////////////////////////////////////////////////////////////////

  
# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Using the `paths` object, get network distances from `home_1` to all other stations.
dist_all <- map_dbl(1:nrow(paths), function(x){
  osm %>%
    activate("nodes") %>% 
    slice(paths$node_paths[[x]]) %>% 
    st_as_sf("edges") %>% 
    pull(length) %>% 
    sum()
}) %>% unlist() 

# Replace zeros with a large value.
if (any(dist_all == 0)){
  dist_all[dist_all == 0] <- max(dist_all)
}

# Find the closest station.
closest_index <- which.min(dist_all)
closest_station <- station[closest_index,]

# Find the distance to the closest station.
closest_dist <- min(dist_all)

# Calculate how long it takes to traverse `closest_dist` 
# assuming we drive at 30 miles/hour speed.
# Store the output in trvt_osm_m.
car_speed <- set_units(30, mile/h)
trvt_osm_m <- closest_dist/set_units(car_speed, m/min) %>%  # Distance divided by 30 mile/h
  as.vector(.)
# =========== NO MODIFY ZONE ENDS HERE ========================================


# TASK ////////////////////////////////////////////////////////////////////////
# 1. From `osm` object, activate nodes part and
# 2. use `closest_index` to extract the selected path
paths_closest <- osm %>%
  activate("nodes") %>% 
  slice(paths$node_paths[[closest_index]])
# //TASK //////////////////////////////////////////////////////////////////////


# TASK ////////////////////////////////////////////////////////////////////////
# Use filter_stop_times() function to create a subset of stop_times data table
# for date = 2024-11-14, minimum departure time of 7AM, maximum departure time of 10AM.
# Assign the output to `am_stop_time` object
am_stop_time <- filter_stop_times(gtfs_obj = gtfs, 
                                  extract_date = "2024-11-14",
                                  min_departure_time = 3600*7, 
                                  # input unit is in second. So 3600*7 is 7AM
                                  max_arrival_time = 3600*10)
# //TASK //////////////////////////////////////////////////////////////////////



# TASK ////////////////////////////////////////////////////////////////////////
# 1. Use travel_times() function to calculate travel times from the `closest_station` 
#    to all other stations during time specified in am_stop_time. Allow ONE transfer.
# 2. Filter the row for which the value of 'to_stop_name' column 
#    equals midtown$stop_name. Assign it into `trvt` object.
trvt <-  travel_times(filtered_stop_times = am_stop_time,
                     stop_name = closest_station,
                     return_coords = TRUE,
                     max_transfers = 1) %>%
        filter(to_stop_name == midtown$stop_name)
# //TASK //////////////////////////////////////////////////////////////////////



# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Divide the calculated travel time by 60 to convert the unit from seconds to minutes.
trvt_gtfs_m <- trvt$travel_time/60

# Add the travel time from home to the nearest station and
# the travel time from the nearest station to Midtown station
total_trvt <- trvt_osm_m + trvt_gtfs_m
# =========== NO MODIFY ZONE ENDS HERE ========================================

5. Converting Step 4 into a function

# Function definition (do not modify other parts of the code in this code chunk except for those inside the TASK section)

get_trvt <- function(home, osm, station, midtown){
  
  # TASK ////////////////////////////////////////
  # If the code in Step 4 runs fine,
  # Replace where it says **YOUR CODE HERE..** below with 
  # the ENTIRETY of the code in the previous code chunk (i.e., Step 4)
  
  # **YOUR CODE HERE..**
  # Extract the first row from `home` object and store it `home_1`
home_1 <- home[1,]
# =========== NO MODIFY ZONE ENDS HERE ========================================


# TASK ////////////////////////////////////////////////////////////////////////
# Find the shortest path from `home_1` to all other stations
# using st_network_paths() function.
paths <- st_network_paths(osm, from = home_1, to = station, type = "shortest")
# //TASK //////////////////////////////////////////////////////////////////////
# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Using the `paths` object, get network distances from `home_1` to all other stations.
dist_all <- map_dbl(1:nrow(paths), function(x){
  osm %>%
    activate("nodes") %>% 
    slice(paths$node_paths[[x]]) %>% 
    st_as_sf("edges") %>% 
    pull(length) %>% 
    sum()
}) %>% unlist() 

# Replace zeros with a large value.
if (any(dist_all == 0)){
  dist_all[dist_all == 0] <- max(dist_all)
}

# Find the closest station.
closest_index <- which.min(dist_all)
closest_station <- station[closest_index,]

# Find the distance to the closest station.
closest_dist <- min(dist_all)

# Calculate how long it takes to traverse `closest_dist` 
# assuming we drive at 30 miles/hour speed.
# Store the output in trvt_osm_m.
car_speed <- set_units(30, mile/h)
trvt_osm_m <- closest_dist/set_units(car_speed, m/min) %>%  # Distance divided by 30 mile/h
  as.vector(.)
# =========== NO MODIFY ZONE ENDS HERE ========================================


# TASK ////////////////////////////////////////////////////////////////////////
# 1. From `osm` object, activate nodes part and
# 2. use `closest_index` to extract the selected path
paths_closest <- osm %>%
  activate("nodes") %>% 
  slice(paths$node_paths[[closest_index]])
# //TASK //////////////////////////////////////////////////////////////////////


# TASK ////////////////////////////////////////////////////////////////////////
# Use filter_stop_times() function to create a subset of stop_times data table
# for date = 2024-11-14, minimum departure time of 7AM, maximum departure time of 10AM.
# Assign the output to `am_stop_time` object
am_stop_time <- filter_stop_times(gtfs_obj = gtfs, 
                                  extract_date = "2024-11-14",
                                  min_departure_time = 3600*7, 
                                  # input unit is in second. So 3600*7 is 7AM
                                  max_arrival_time = 3600*10)
# //TASK //////////////////////////////////////////////////////////////////////



# TASK ////////////////////////////////////////////////////////////////////////
# 1. Use travel_times() function to calculate travel times from the `closest_station` 
#    to all other stations during time specified in am_stop_time. Allow ONE transfer.
# 2. Filter the row for which the value of 'to_stop_name' column 
#    equals midtown$stop_name. Assign it into `trvt` object.
trvt <-  travel_times(filtered_stop_times = am_stop_time,
                     stop_name = closest_station,
                     return_coords = TRUE,
                     max_transfers = 1) %>%
        filter(to_stop_name == midtown$stop_name)
# //TASK //////////////////////////////////////////////////////////////////////



# =========== NO MODIFICATION ZONE STARTS HERE ===============================
# Divide the calculated travel time by 60 to convert the unit from seconds to minutes.
trvt_gtfs_m <- trvt$travel_time/60

# Add the travel time from home to the nearest station and
# the travel time from the nearest station to Midtown station
total_trvt <- trvt_osm_m + trvt_gtfs_m
# =========== NO MODIFY ZONE ENDS HERE ========================================

  
  
  
  # //TASK //////////////////////////////////////

  # =========== NO MODIFICATION ZONE STARTS HERE ===============================
  if (length(total_trvt) == 0) {total_trvt = 0}

  return(total_trvt)
  # =========== NO MODIFY ZONE ENDS HERE ========================================
}

6. Apply the function for the whole study area

# Prepare an empty vector
total_trvt <- vector("numeric", nrow(home))

# Apply the function for all Census Tracts
# Fill `total_trvt` object with the calculated time
for (i in 1:nrow(home)){
  total_trvt[i] <- get_trvt(home[i,], osm, station, midtown)
}

# Cbind the calculated travel time back to `home`
home_done <- home %>% 
  cbind(trvt = total_trvt)

7. Creating the maps and plots

# Map
tmap_mode('view')
## tmap mode set to interactive viewing
tm_shape(census[census$GEOID %in% home$GEOID,]) + 
  tm_polygons(col = "hhincE", palette = 'GnBu') + 
  tm_shape(home_done) + 
  tm_dots(col = "trvt", palette = 'Reds', size = 0.1)
tm_shape(census[census$GEOID %in% home$GEOID,]) + 
  tm_polygons(col = "pct_minority", palette = 'GnBu') + 
  tm_shape(home_done) + 
  tm_dots(col = "trvt", palette = 'Reds', size = 0.1)
# ggplot
inc <- ggplot(data = home_done,
              aes(x = hhincE, y = trvt)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Median Annual Household Income",
       y = "Park-and-ride Travel Time from Home to Midtown Station") +
  theme_bw()

minority <- ggplot(data = home_done,
                   aes(x = pct_minority, y = trvt)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Minority Population (%)",
       y = "Park-and-ride Travel Time from Home to Midtown Station") +
  theme_bw()


ggpubr::ggarrange(inc, minority)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
## `geom_smooth()` using formula = 'y ~ x'

In urban areas like Atlanta, access to efficient public transportation can significantly affect residents’ mobility and job accessibility. There is growing awareness that minority communities may experience disparities in transit access and travel times. These graph explores the link between park-and-ride travel times and neighborhood demographics, focusing on income and minority population to assess transit accessibility disparities in Atlanta.

Median Annual Household Income vs. Park-and-Ride Travel Time

This plot shows a slight positive correlation between median household income and travel time. The trend line suggests that, on average, people from higher-income neighborhoods have slightly longer park-and-ride travel times to Midtown. However, the weak correlation implies that income doesn’t have a major impact on travel time differences.

Minority Population Percentage vs. Park-and-Ride Travel Time

The second plot shows a slight negative correlation between minority population percentage and travel time. The trend line suggests that neighborhoods with a higher percentage of minority residents tend to have slightly shorter park-and-ride travel times to Midtown, though the connection isn’t very strong. This could mean that predominantly minority neighborhoods have similar or even slightly better access to park-and-ride options in terms of travel time to Midtown.

Conclusion

These findings suggest that while there are slight trends in travel times related to income and minority population percentage, the relationships are weak, indicating that other factors might be more influential in determining park-and-ride travel times to Midtown.