6c, 7c, 16c, 35,47abc,50, 52c, 55, 58

6.

Suppose that \(X\sim bin(n,p)\)

  1. If \(n=10\) and \(X=5\), plot the log likelihood function.

Solution:

Calculating the log-likelihood for the Binomial PMF yields:

\[l(p) = \log \binom{n}{X} + X\log(p) + (n-X)\log(1-p)\] substituting in for the values given we have: \[l(p) = \log(252) + 5\log(p) + 5\log(1-p)\]

7.

Suppose that \(X\) follows the geometric distribution.

  1. Find the asymptotic variance of the MLE.

Solution

By results in a proven theorem we have that the assymptotic variance is given by:

\[-\frac{1}{El''(p)}\]

So the problem reduces to finding the value of the denominator.

First we can formulate the log-likelihood function to be: \[l(p) = n\ln(p) + (\sum_{i = 1}^nX_i - n)\ln(p)\] Taking the first and then second derivative of this with respect to \(p\) yields: \[l'(p) = \frac{n}{p} - \frac{\sum X_i - n}{1-p} \Rightarrow\] \[l''(p) = -\frac{n}{p^2} - \frac{\sum X_i - n}{(1-p)^2}\] Now taking the expectation of this (we will take the negative and inverse of this at the end): \[E\Big[-\frac{n}{p^2} - \frac{\sum X_i - n}{(1-p)^2}\Big] = -\frac{n}{p^2} - \frac{\sum E[X] - n}{(1-p)^2}\] \[ = - \frac{n}{p^2} - \frac{n(1/p) - n}{(1-p)^2}\] \[n\Big[- \frac{1}{p^2} - \frac{(1/p) - 1}{(1-p)^2}\Big]\] \[= n -\Big[\frac{(1-p)^2 + p - p^2}{(1-p)^2p^2}\Big] =-\frac{n}{(1-p)p^2}\]

Now applying the negative and inversing we get the assymptotic variance to be: \[ \frac{(1-p)p^2}{n}\]

16.

Consider an i.i.d sample of random variables with density function \[f(x|\sigma) = \frac{1}{2\sigma}\exp\Big(-\frac{|x|}{\sigma}\Big)\]

  1. Find the asymptotic variance of the mle.

Solution

Using what we formulated in the finding the mle we know that the log-likelihood function of the density function is given by:

\[l(\sigma) = -n\ln(2\sigma) - \frac{\sum |X|}{\sigma}\]

Now we find the first and second derivative of this with respect to \(\sigma\)

\[l'(\sigma) = -\frac{n}{\sigma} + \frac{\sum |X|}{\sigma^2}\] \[l''(\sigma) = \frac{n}{\sigma^2} - 2\frac{\sum |X|}{\sigma^3}\]

Now taking the expectation of this (we take the inverse and negative at the end):

\[E\Big[l''(\sigma)\Big] = E\Big[\frac{n}{\sigma^2} - 2\frac{\sum |X|}{\sigma^3}\Big]\] \[ = \frac{n}{\sigma^2} - \frac{2}{\sigma^3}\sum E[|X|] \;\; **\]

We now tackle the problem of finding the exptected value in the equation.

\[E\Big[|X|\Big] = \int_{-\infty}^\infty x\frac{1}{2\sigma}\exp(-\frac{x}{\sigma}) = \frac{1}{2\sigma}\int_{-\infty}^\infty x\exp(-\frac{x}{\sigma})\]

But now taking a close look we can rearrange this so that it looks like something we are familiar with, namely the exponential: \[\int_{0}^\infty x\frac{1}{\sigma}\exp(-\frac{x}{\sigma})\] \[ = \sigma\]

Now plugging this back into \(**\) above we have the assymptotic variance is given by:

\[\frac{\sigma^2}{n}\]

35

Let \(U_1, U_2, \cdots U_{1029}\) be independent Uniformly distributed random variables. Let \(X_1\) be the number of \(U_i\) less than .331, \(X_2\) be the number of between .331 and .820 and \(X_3\) equal the number greater than .820. Why is the joint distribution of \(X_1, X_2, X_3\) multinomial with probabilities .331, .489, and .180 and n=1029?

Solution By definition of the uniform distribution there is equal probability for any value between zero and one. And so it follows that the probability of observing a value less than .331 is .331 and so on.

47.

The Pareto distribution has been used in economics as a model for a density function with a slowly decaying tail: \[f(x|x_0, \theta) = \theta x_0^\theta x^{-\theta-1}, \;\; x\geq x_0, \theta > 1\]

Assume that \(x_0 > 0\) is given and that \(X_1, X_2, ..., X_n\) is an i.i.d sample.

  1. Find the method of moments estimate of \(\theta\)
  2. Find the mle of \(\theta\)
  3. Find the asymptotic variance of the mle

Soluton

  1. First we find the theoretical moment of the pareto distribution call it \(\mu_1\)

\[E(X) = \int_{x_0}^\infty x\theta x_0^{\theta} x^{-\theta - 1}dx\] \[ = \theta x_0^\theta \Big[ \frac{x^{-\theta+1}}{-\theta + 1} \Big] \Big|_{x_0}^{\infty} = \frac{x_0^\theta}{\theta - 1}\]

\[\Rightarrow \theta = \frac{\mu}{\mu - x_0}\] and so the mm estimate becomes: \[\hat{\theta} = \bar{X}/(\bar{X} - x_0)\]

  1. The log likelihood function is given by: \[l(\theta) = n\log(\theta) + n\theta \log(x_0) - (\theta + 1)\sum\log(x_i)\] and so taking the first derivative, setting to zero and solving we get: \[l'(\theta) = \frac{n}{\theta} + n\log(x_0) - \sum\log(x_i)\] \[l'(\theta) = \frac{n}{\theta} + n\log(x_0) - \sum\log(x_i) = 0\] \[\Rightarrow \hat{\theta} = \frac{n}{\sum\log(X_i) - n\log(x_0)}\]

  2. The asymptotic variance is given by: \[1/[nI(\theta)]\]

So we find the Fisher Information: \[I(\theta) = -E[l''(\theta)] = E[\frac{\partial^2}{\partial\theta^2} (n\log(\theta) + n\theta \log(x_0) - (\theta + 1)\sum\log(x_i))]\] \[ = \frac{1}{\sigma^2}\] and so the asymptotic variance is: \[\sigma^2/n\]

46.

### Problem 46: Bowhead whale.
# a.

whale = scan("~/Downloads/whale.txt")       # read data

whale.data = whale

br = seq(0,5,0.25)  # create breaks for the histogram

X11()
hist(whale,breaks=br,main='whale data',probability = T,plot=T)      # create histogram with breaks br

# since thew whale data is continuous, really should use a density estimator

#X11()
#plot(density(whale, n=50, window="g"),type="l",xlab="x",ylab="density")

########################################################################################
# matrices for output

out.mme = matrix(0,2,5)

out.mle = matrix(0,2,7)

########################################################################################
# b.  MME

n = length(whale)   # sample size

x.bar = mean(whale) # sample mean

sigmasq.hat = ((n-1)/n)*var(whale)  # (1/n)sum(x_i - x.bar)^2

lambda.hat.mme = x.bar/sigmasq.hat
lambda.hat.mme
## [1] 1.329121
alpha.hat.mme = x.bar^2/sigmasq.hat
alpha.hat.mme
## [1] 0.8002543
out.mme[1,1] = alpha.hat.mme
out.mme[2,1] = lambda.hat.mme

# c. MLE

# solve the nonlinear equation

alpha.d = function(a){
    n*log(a) - n*(log(mean(whale))) + sum(log(whale)) - n*digamma(a)
}

a.min = 0.1
a.max = 5

alpha.hat.mle = uniroot(alpha.d, c(a.min,a.max))

alpha.hat.mle = alpha.hat.mle$root
alpha.hat.mle
## [1] 1.611355
lambda.hat.mle = alpha.hat.mle / mean(whale)
lambda.hat.mle
## [1] 2.676257
out.mle[1,1] = alpha.hat.mle
out.mle[2,1] = lambda.hat.mle

# d. 

# plot the fitted density using mme

par(new=T)      # plot fitted curve on the histogram

x = seq(0.01,5,0.01)
y = dgamma(x,alpha.hat.mme,lambda.hat.mme)

y.max = 1.8     # approximate maximum of the histogram, used to match y-axis scale.

plot(x,y,type='l',ylim=c(0,y.max))

# plot the fitted density using mle

par(new=T)      # plot fitted curve on the histogram

x = seq(0.01,5,0.01)
y = dgamma(x,alpha.hat.mle,lambda.hat.mle)

y.max = 1.8     # approximate maximum of the histogram, used to match y-axis scale.

plot(x,y,type='l',lty=4,ylim=c(0,y.max))
# e. Bootstrap estimate of the s.e. and sampling distribution of the mme's

B = 1000

y = matrix(0,B,n)

lambda.star.mme = numeric(B)
alpha.star.mme = numeric(B)

for(i in 1:B){
    y[i,] = rgamma(n, alpha.hat.mme,lambda.hat.mme)
    x.bar = mean(y[i,])
    sigmasq.hat = ((n-1)/n)*var(y[i,]) 
    lambda.star.mme[i] = x.bar/sigmasq.hat
    alpha.star.mme[i] = x.bar^2/sigmasq.hat
}

br = seq(0,5,0.10)  # create breaks for the histogram

X11()
hist(alpha.star.mme,breaks=br,probability = T,plot=T) 
alpha.star.mean = mean(alpha.star.mme)
alpha.star.mean
## [1] 0.8232669
alpha.star.sd = sqrt(var(alpha.star.mme))
alpha.star.sd
## [1] 0.1098088
out.mme[1,2] = alpha.star.mean
out.mme[1,3] = alpha.star.sd

alpha.LCL = quantile(alpha.star.mme, 0.025)
alpha.LCL
##      2.5% 
## 0.6244449
alpha.UCL = quantile(alpha.star.mme, 0.975)
alpha.UCL
##    97.5% 
## 1.035594
out.mme[1,4] = alpha.LCL
out.mme[1,5] = alpha.UCL

X11()
hist(lambda.star.mme,breaks=br,probability = T,plot=T)
lambda.star.mean = mean(lambda.star.mme)
lambda.star.mean
## [1] 1.378505
lambda.star.sd = sqrt(var(lambda.star.mme))
lambda.star.sd
## [1] 0.2087042
out.mme[2,2] = lambda.star.mean
out.mme[2,3] = lambda.star.sd

lambda.LCL = quantile(lambda.star.mme, 0.025)
lambda.LCL
##      2.5% 
## 0.9966149
lambda.UCL = quantile(lambda.star.mme, 0.975)
lambda.UCL
##    97.5% 
## 1.810496
out.mme[2,4] = lambda.LCL
out.mme[2,5] = lambda.UCL

# f. Bootstrap estimate of the s.e. and sampling distribution of the mle's

B = 1000

y = matrix(0,B,n)

lambda.star.mle = numeric(B)
alpha.star.mle = numeric(B)

a.min = 0.5
a.max = 5

for(i in 1:B){
    y[i,] = rgamma(n, alpha.hat.mle,lambda.hat.mle)
    whale = y[i,]
    alpha.star.mle[i] = uniroot(alpha.d, c(a.min,a.max))$root   # alpha
    lambda.star.mle[i] = alpha.star.mle[i] / mean(whale)        # lambda
}

br = seq(0,5,0.05)  # create breaks for the histogram

X11()
hist(alpha.star.mle,breaks=br,probability = T,plot=T) 
alpha.star.mean = mean(alpha.star.mle)
alpha.star.mean
## [1] 1.631555
alpha.star.sd = sqrt(var(alpha.star.mle))
alpha.star.sd
## [1] 0.148771
out.mle[1,2] = alpha.star.mean
out.mle[1,3] = alpha.star.sd

alpha.LCL = quantile(alpha.star.mle, 0.025)
alpha.LCL
##     2.5% 
## 1.367639
alpha.UCL = quantile(alpha.star.mle, 0.975)
alpha.UCL
##   97.5% 
## 1.94607
out.mle[1,4] = alpha.LCL
out.mle[1,5] = alpha.UCL

X11()
hist(lambda.star.mle,breaks=br,probability = T,plot=T)
lambda.star.mean = mean(lambda.star.mle)
lambda.star.mean
## [1] 2.721388
lambda.star.sd = sqrt(var(lambda.star.mle))
lambda.star.sd
## [1] 0.2894131
out.mle[2,2] = lambda.star.mean
out.mle[2,3] = lambda.star.sd

lambda.LCL = quantile(lambda.star.mle, 0.025)
lambda.LCL
##     2.5% 
## 2.217553
lambda.UCL = quantile(lambda.star.mle, 0.975)
lambda.UCL
##   97.5% 
## 3.39229
out.mle[2,4] = lambda.LCL
out.mle[2,5] = lambda.UCL

# g. approximate 95% CI for the mle's

# alpha 

delta.low = quantile(alpha.star.mle,0.025) - alpha.star.mean 
delta.up = quantile(alpha.star.mle,0.975) - alpha.star.mean

mle.LCL = alpha.hat.mle - delta.up 
mle.LCL
##    97.5% 
## 1.296841
mle.UCL = alpha.hat.mle - delta.low
mle.UCL
##     2.5% 
## 1.875272
out.mle[1,6] = mle.LCL
out.mle[1,7] = mle.UCL

# lambda 

delta.low = quantile(lambda.star.mle,0.025) - lambda.star.mean 
delta.up = quantile(lambda.star.mle,0.975) - lambda.star.mean

mle.LCL = lambda.hat.mle - delta.up 
mle.LCL
##    97.5% 
## 2.005355
mle.UCL = lambda.hat.mle - delta.low
mle.UCL
##     2.5% 
## 3.180093
out.mle[2,6] = mle.LCL
out.mle[2,7] = mle.UCL

# Summary

dimnames(out.mme) = list(c("alpha","lambda"),c("MME", "Bootstrap.mean", "Bootstrap.sd", "quant.LCL", "quant.UCL"))
dimnames(out.mle) = list(c("alpha","lambda"),c("MLE", "Bootstrap.mean", "Bootstrap.sd", "quant.LCL", "quant.UCL", "approx.LCL", "approx.UCL"))

out.mme
##              MME Bootstrap.mean Bootstrap.sd quant.LCL quant.UCL
## alpha  0.8002543      0.8232669    0.1098088 0.6244449  1.035594
## lambda 1.3291210      1.3785047    0.2087042 0.9966149  1.810496
out.mle
##             MLE Bootstrap.mean Bootstrap.sd quant.LCL quant.UCL approx.LCL
## alpha  1.611355       1.631555    0.1487710  1.367639   1.94607   1.296841
## lambda 2.676257       2.721388    0.2894131  2.217553   3.39229   2.005355
##        approx.UCL
## alpha    1.875272
## lambda   3.180093

50.

Solution

  1. Find the method of moments estimator: Finding the theoretical moment we have: \[E(X) = \int_0^\infty \frac{x^2}{\theta^2}e^{\frac{-x^2}{2\theta^2}}\] and so we have that the estimate is given by: \[\hat{\theta} = \sqrt{\frac{2}{\pi}\bar{X}}\]

  2. To find the mle we write out the log ligekilihood function, which is given by: \[l(\theta) = \sum[\ln(x_i) - 2\ln(\theta) - \frac{x_i^2}{2\theta^2}]\] \[ = \sqrt{\frac{\pi\theta^2}{2}}\] now taking the first derivative, setting to 0 and solving we have: \[l'(\theta) = -2n/\theta + \sum x_i^2/\theta^3\] \[\Rightarrow \hat{\theta} = \sqrt{\frac{1}{2n}\sum X_i^2}\]

  3. We simply use what was formulated above and find that the asymptotic variance is: \[\frac{\theta^2}{4n}\]

52.

  1. Find the asymptotic variance of the mle

Solution

  1. We know from previous results that: \[l''(\theta) = -n/(1+\theta)^2\] and so it follows that the asymptotic variance is given by: \[(1 + \theta)^2/n\]

55.

Solution

(a/b) To find the mle we write out the log-likehood function given by:

\[\ln(n!) - \sum\ln(X_i!) + X_1\ln .25(2 + \theta) + X_2\ln .25(1-\theta) + X_3\ln .25(1- \theta) + X_4\ln .25\theta\] Now taking the derivative of this equating to zero and solving yields: \[\theta^2(-X_1 - X_2 - X_3 - X_4) + \theta(X_1 - 2X_2 - 2X_3 - X_4) + 2X_4 = 0\] Using the provided data we get: \[0.035712\] Moreover using the formula we find the asymptotic variance to be: \[1/110076.9 \]

  1. Using part (a) we can form the 95% cofidence interval to get: \[(0.02980475,0.04161986)\]

p1 <- 0.25*(2+theta_hat)
p2 <- 0.25*(1-theta_hat)
p3 <- 0.25*(1-theta_hat)
p4 <- 0.25*theta_hat
numberOfReps <- 1000
sim <- rmultinom(numberOfReps, size = n, prob = c(p1,p2,p3,p4))
est <- c()
for(i in 1:numberOfReps){
  X1 <- sim[1,i]
  X2 <- sim[2,i]
  X3 <- sim[3,i]
  X4 <- sim[4,i]
  cT2 <- -X1-X2-X3-X4
  cT <-X1-2*X2-2*X3-X4
  C <- 2*X4
  roots <- as.numeric(polyroot(c(C, cT, cT2)))
  est[i] <- roots[roots >= 0]
}
sd(est)

which results in $ 0.005824132$

58.

On attached handwritten paper.