# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("TM", "SBUX", "AEO", "BBW")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AEO" "BBW" "SBUX" "TM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.3)
weights
## [1] 0.25 0.25 0.20 0.30
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AEO 0.25
## 2 BBW 0.25
## 3 SBUX 0.2
## 4 TM 0.3
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date returns
## <date> <dbl>
## 1 2013-03-28 0.108
## 2 2013-06-28 0.103
## 3 2013-09-30 0.0238
## 4 2013-12-31 0.0187
## 5 2014-03-31 -0.00730
## 6 2014-06-30 0.0916
## 7 2014-09-30 0.0548
## 8 2014-12-31 0.136
## 9 2015-03-31 0.112
## 10 2015-06-30 -0.0356
## 11 2015-09-30 -0.00379
## 12 2015-12-31 -0.0806
## 13 2016-03-31 -0.00559
## 14 2016-06-30 -0.0278
## 15 2016-09-30 0.00508
## 16 2016-12-30 0.0425
## 17 2017-03-31 -0.142
## 18 2017-06-30 -0.00367
## 19 2017-09-29 0.0345
## 20 2017-12-29 0.108
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.372
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 12
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 9 × 2
## date rolling_sr
## <date> <dbl>
## 1 2015-12-31 0.634
## 2 2016-03-31 0.509
## 3 2016-06-30 0.353
## 4 2016-09-30 0.328
## 5 2016-12-30 0.357
## 6 2017-03-31 0.149
## 7 2017-06-30 0.0527
## 8 2017-09-29 0.0311
## 9 2017-12-29 0.000217
rolling_sr_tbl %>% ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Sharpe Ratio", title = "Rolling 12 Month Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2017-01-01"),
y = 0.5,
label = "This portfolio has done poorly from 2016-2018.",
color = "red",
size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
This portfolio did not perform well overtime. This decrease in sharpe ratio means that the risk is increasing but the return is not increasing with it. It could also mean returns are decreasing while the risks remain the same. There are no structural breaks over this period.